Ch 5 INTEGRAL CALCULUS 30L PRACTICE QUESTIONS (5.1 - 5.6)

The following questions are additional practice questions that will help you prepare for the 30L Chapter 5 test. The questions that allow for graphing calculator will be indicated within the instructions and/or by the image of a calculator beside the question. Please note that many questions given within the calculator section do not actually require the use of the calculator to answer the question most efficiently – it is quite possible that the calculator will be of no use at all. Questions that do not include an image of a calculator generally mean that NO calculator is to be used. .

- **1.** The function $f(x) = x^{2/3}$ on [-8, 8] does not satisfy the conditions of the Mean Value Theorem because
 - (A) f(0) is not defined
 - **(B)** f(x) is not continuous on [-8, 8]
 - (C) f'(-1) does not exist

(D) f(x) is not defined for x < 0(E) f'(0) does not exist

2. The graph of g ' is shown here. Which of the following statements is (are) true of g at x = a?

- II. g is differentiable. III. g is increasing.
- (A) I only (B) III only (C) I and III only
- (D) II and III only (E) I, II, and III

- 3. If f(a) = f(b) = 0 and f(x) is continuous on [a, b], then
 - (A) f(x) must be identically zero
 - **(B)** f'(x) may be different from zero for all x on [a, b]
 - (C) there exists at least one number c, a < c < b, such that f'(c) = 0
- **(D)** f'(x) must exist for every x on (a, b)
- (E) none of the preceding is true

For Questions 5 and 6 $f'(x) = x \sin x - \cos x$ for 0 < x < 4. 5. *f* has a local maximum when *x* is approximately

 (A) 0.9
 (D) 3.4

 (B) 1.2
 (E) 3.7

 (C) 2.3
 (E) 3.7

6. The graph of f has a point of inflection when x is approximately

(A) 0.9	(D) 3.4
(B) 1.2	(E) 3.7
(C) 2.3	

00000000000

7. The graph of f' is shown below. If we know that f(2) = 10, then the local linearization of f at x

8. Suppose $f'(x) = x^2 (x - 1)$. Then f''(x) = x (3x - 2). Over which interval(s) is the graph of f both increasing and concave up?

I. $x < 0$	III. $\frac{2}{3} < x < 1$
II. $0 < x < \frac{2}{3}$	IV. $x > 1$
(A) I only	(D) I and III
(B) II only	(E) IV only
(C) II and IV	

9. Which of the following statements is true about the graph of f(x) in Question **8**.

- (\mathbf{A}) The graph has no relative extrema.
- (B) The graph has one relative extremum and one inflection point.
- (D) The graph has two relative extrema and two inflection points.
- (C) The graph has two relative extrema and one inflection point.
- (E) None of the preceding statements is true.

A. 000
00000
00000
00000
-mmmQ

10. At what point in the interval [1, 1.5] is the rate of change of f (x) = sin x equal to its average rate of change on the interval?
(A) 0.995
(B) 1.058
(C) 1.239

11. If f(x) is continuous at the point where x = a, which of the following statements may be false?

(A) $\lim_{x \to a} f(x)$ exists. (B) $\lim_{x \to a} f(x) = f(a)$. (C) f'(a) exists. (D) f(a) is defined. (E) $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$.

- 12. For $t \ge 0$ hours, *H* is a differentiable function of *t* that gives the temperature, in degrees Celsius, at an Arctic weather station. Which of the following is the best interpretation of H'(24)?
 - A. The change in temperature during the first day
 - B. The change in the temperature during the 24th hour.
 - C. The average rate at which the temperature changed during the 24th hour
 - D. The average rate at which the temperature is changing during the first day
 - E. The rate at which the temperature is changing at the end of the 24th hour.

14. On the interval $0 \le x \le 10$, how many relative minimums does the graph of g(x) have if $g'(x) = \frac{\sin x}{x+2}$?

A. 0	D. 3
B. 1	E. 4
C 2	

15. The graph of the function $y = x^3 + 6x^2 + 7x - 2\cos x$ changes concavity at x =

(A) -1.58 (B) -1.63 (C) -1.67 (D) -1.89 (E) -2.33

x	-4	-3	-2	-1	0	1	2	3	4
g'(x)	2	3	0	-3	-2	-1	0	3	2

16. The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table above. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals?

A2 <x<2 only<="" th=""><th>B2<u><x<< u="">2 only</x<<></u></th><th>C1<u><</u>x<u><</u>1 only</th></x<2>	B2 <u><x<< u="">2 only</x<<></u>	C1 <u><</u> x <u><</u> 1 only
D. x <u>≥</u> -2	E. x <u><</u> -2 or x≥2	F. x <u>≥</u> 2 only

17. The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$. The graph of f''(x) is shown to the right. For what values of x does the graph of f'(x) have a relative maximum?

í	
	000
	00000
	80000

- A. *j* and *k* only
 B. *a* and *b* only
 - C. a only
- D. 0 only
- E. a and 0 only

18. A table of function values for a twice differentiable function, f(x), is pictured to the right. Which of the following statements is/are true if f(x) has only one zero on the $-3 \le x \le 3$? Use only the given points to answer!

1	
	00000
	00000
	00000
- 1	

D. II and III only

I. $f'(x) < 0$ on the interval $-3 < x < 3$. II. $f(x)$ has a zero between $x = 1$ and $x = 3$. III. $f''(x) > 0$ on the interval $-3 < x < 3$.				
A. I only	B. I and II only	C. III only		

x	<i>f</i> (x)
-3	10
-1	8
1	2
3	-13

The function f has a first derivative given by $f'(x) = \frac{\sqrt{x}}{1 + x + x^3}$. What is the x-coordinate of the point 19.

of inflection of the graph of f? (CALCULATOR PROBLEM)

E. I, II and III

A. 1.008 B. 0.473 C. 0 D. -0.278 E. The graph has no points of inflection.

20. If h(x) is a twice differentiable function such that h(x) < 0 for all values of x, then at what value(s) does the graph of g(x) have a relative maximum if $g'(x) = (9 - x^2) \cdot h(x)$?

 A. x = 3 and x = -3 B. x = 3 only

 C. x = 9 only
 D. x = -3 only

E. g(x) does not have a relative maximum

21. For $t \ge 0$, the velocity of a particle moving along the x – axis is given by $v(t) = e^{\tan t} + t^2 - 5$. Which of the following statements is/are true?

		-
-	a	
	9.9	P I
	200	
	0.000	51
		51
		5

- I. The particle first changes directions at t = 1.
- II. On the interval 0 < t < 1, the mean value theorem guarantees a time t at which the instantaneous acceleration is equal to the average acceleration of the particle.
- III. At t = 2, the speed of the particle is decreasing.

A. II and III only	B. I and III only
C. III only	D. I, II and III

22. A particle moves along a line so that at time *t*, where $0 \le t \le \pi$, its position is given by

$s(t) = -4\cos t - \frac{t^2}{2} + 1$	0. What is the velo	city of the particle when its acceler	ration is zero?
A. 2.55	B. 0.74	C. 1.32	D. –5.19

23. The position of a particle moving along the x – axis is given by the function $p(t) = (t-1)\cos(2t)$. At what value of t does the particle change directions the second time on the interval 0 < t < 3?

A. 0.543 B. 1.386 C. 0.892 D. 1.839

24. The graph below shows the distance s(t) from a reference point of a particle moving on a number line, as a function of time, t. Which of the following points marked is closest to the point where the acceleration first becomes negative?

	A. A	B. B
	C. C	D. D
3		

25. A particle moves along the *x* – axis so that at any time $t \ge 0$ its velocity is given by the function $v(t) = t^2 \ln(t+2)$. What is the acceleration of the particle at time t = 6?

THE REMAINDER OF THE ASSIGNMENT REQUIRES WORK AND JUSTIFICATION TO BE SHOWN

- 26. If $f(x) = \sin(\frac{x}{2})$, then there exists a number *c* on the interval $\frac{\pi}{2} < x < \frac{3\pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following values could be *c*?
 - (A) $\frac{2\pi}{3}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{6}$ (D) π (E) $\frac{3\pi}{2}$

27. For $t \ge 0$, the temperature of a cup of coffee in degrees Fahrenheit *t* minutes after it is poured is modeled by the function $F(t) = 68 + 93(0.91)^t$. Find the value of F'(4). Using correct units of measure, explain what this value means in the context of the problem. [CALC]

28. A particle moves along the *x*-axis so that any time t > 0, its velocity is given by $v(t) = 2t \ln t - t$. a. Write an expression for the acceleration of the particle.

b. What are the values of t for which the particle is moving to the right? Justify your answer.

c. Is the particle speeding up or slowing down at t = 1? Show the analysis that leads to your conclusion.

d. Find the absolute minimum velocity of the particle. Show the analysis that leads to your conclusion.

- 29. The function $f'(x) = \cos(\ln x)$ is the first derivative of a twice differentiable function, f(x).
 - a. On the interval $0 \le x \le 10$, find the x value(s) where f(x) has a relative maximum. Justify your answer.

b. On the interval $0 \le x \le 10$, find the x – value(s) where f(x) has a relative minimum. Justify your answer.

c. On the interval 0 < x < 10, find the x - value(s) where f(x) has a point of inflection. Justify your answer. 30. For the functions in exercises 1 and 2, determine if the Mean Value Theorem holds true for $0 \le c \le 5$? Give a reason for your answer. If it does hold true, find the guaranteed value(s) of c. [CALC]

a)
$$f(x) = -2 + \frac{1}{2}|x-3|$$

b) $g(x) = -2x + \sin^2 x$

31. The price of a share of stock in dollars over a week is given by the function $P(t) = \sqrt{2t+1} + 2\cos t + 20$ where t is measured in days and $0 \le t \le 5$.

a. Find the average rate of change of the price of the stock over [0, 5]. Use correct units.

b. Apply the Mean-Value Theorem to P on [0, 5] and explain the result in the context of the problem situation.

c. On what value of t over the 5-day period is the price of the stock increasing the fastest?

32. Administrators at a hospital believe that the number of beds in use is given by the function $B(t) = 20\sin\left(\frac{t}{10}\right) + 50,$

where t is measured in days. [CALC]

a. Find the value of B'(7). Using correct units of measure, explain what this value means in the context of the problem.

b. For $12 \le t \le 20$, what is the maximum number of beds in use?

33. Determine whether $g(x) = \sin 2x + 2x$ satisfies the hypotheses of the Mean Value Theorem on the interval $[0, \pi]$ If so, find all numbers c in (a, b) such that f(b) - f(a) = f'(c)(b-a). NO SCIENTIFIC OR GRAPHING CALCULATOR.

34. For questions 5 - 8, use the table given below which represents values of a differentiable function g on the interval $0 \le x \le 6$. Be sure to completely justify your reasoning when asked, citing appropriate theorems, when necessary.

x	0	2	3	4	6
g(x)	-3	1	5	2	1

a) Estimate the value of g'(2.5).

b) If one exists, on what interval is there guaranteed to be a value of c such that g(c) = -1? Justify your reasoning.

c) If one exists, on what interval is there guaranteed to be a value of c such that g'(c) = 0? Justify your reasoning.

d) . If one exists, on what interval is there guaranteed to be a value of c such that g'(c) = 4? Justify your reasoning.