CALCULUS 30: OUTCOME 4B DAY 1 - THE POWER RULE \& SUM/DIFFERENCE RULE

To learn and apply the power rule and the sum and difference rules for differentiation..
VIDEO LINKS:
a) https://goo.gl/FBSgsy
c) https://goo.gl/rx6FpV

Do you see any patterns in the following questions between $f(x)$ and the FINAL answer for $f^{\prime}(x)$? Can we use this pattern to jump right to the answer without doing any of the "limit" work in between?
If $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}$, find $\mathrm{f}^{\prime}(\mathrm{x})$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}\right]-\left[3 x^{2}\right]}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[3 x^{2}+6 x h+3 h^{2}\right]-\left[3 x^{2}\right]}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[3 x^{2}+6 x h+3 h^{2}\right]-\left[3 x^{2}\right]}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[3 x^{2}+6 x h+3 h^{2}\right]-\left[3 x^{2}\right]}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{3 h^{2}+6 x h}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h(3 h+6 x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0}$
$f^{\prime}(x)=6 x+6 x$

$$
\begin{aligned}
& \text { If } \mathrm{f}(\mathrm{x})=5 \mathrm{x}^{3}, \text { find } \mathrm{f}^{\prime}(\mathrm{x}) \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[5(x+h)^{3}\right]-\left[5 x^{3}\right]}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[5 x^{3}+15 x^{2} h+15 x h^{2}+5 h^{3}\right]-\left[5 x^{3}\right]}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{15 x^{2} h+15 x h^{2}+5 h^{3}}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h\left(15 x^{2}+15 x h+5 h^{2}\right)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \\
& f^{\prime}(x)=15 x^{2}
\end{aligned}
$$

- So far, we have been using $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to find the slope of the tangent line of the curve $y=f(x)$ at the general point $(x, f(x))$, also called the derivative, or $f^{\prime}(x)$ or $\frac{d y}{d x}$.
- This takes a lot of time and mistakes can be easily made if you are not careful. There is an easier way!!

DERIVATIVES : Do you notice the pattern in the following examples?

a) $\mathrm{s}(\mathrm{t})=3 \mathrm{t}$
$s^{`}(t)=3$
b) $f(x)=7 x^{2}$
$f^{\prime}(x)=14 x$
c) $f(x)=-9 x^{5}$
$f^{\prime}(x)=-45 x^{4}$
d) $f(x)=\frac{10}{x}$
$f(x)=10 x^{-1}$
$f^{\prime}(x)=-10 x^{-2}$

THE POWER RULE (part 1):

- If $f(x)=x^{n}$, where n is a real number, then $f^{\prime}(x)=n x^{n-1}$
- In Leibniz notation we say that $\frac{d}{d x} x^{n}=n x^{n-1}$.

THE POWER RULE (part 2):

- If $f(x)=c x^{n}$, where c is a constant and n is a real number, then $f^{\prime}(x)=(c)(n) x^{n-1}$
- In Leibniz notation we say that $\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)$

Ex \#1: Find $f^{\prime}(x)$ or $\frac{d y}{d x}$ of the following functions:
a) $f(x)=x^{15}$
b) $f(x)=\frac{1}{x^{3}}$
c) $f(x)=\sqrt{x}$
d) $f(x)=\frac{1}{\sqrt[3]{x^{2}}}$

NOTE: At this point we often negative exponents in the answers. We will sometimes leave radicals in the denominator and not rationalize the denominator.
Ex \#2: Find $f^{\prime}(x)$ or $\frac{d y}{d x}$ of the following functions:
a) $f(x)=-4 x^{15}$
b) $f(x)=\left(5 x^{4}\right)^{3}$
c) $f(x)=\sqrt{7 x}$
d) $f(x)=\sqrt[3]{\frac{4}{x^{2}}}$
e) $y=3 x^{3} \sqrt[3]{x}$

THE CONSTANT RULE: If $f(x)=c$, where c is a constant (\#), then $f^{\prime}(x)=0$ (Proof on P 78)

Ex \#3: If $f(x)=-5$, determine $f^{\prime}(x)$.

Ex \#4: Find the equation of the tangent line to the curve $y=x^{5}$ at the point $(2,32)$.

THE SUM/DIFFERENCE RULE:

If $f(x)$ is the sum of 2 differentiable functions $f(x)=g(x) \pm h(x))$ then $\quad f^{\prime}(x)=g^{\prime}(x) \pm h^{\prime}(x)$

Ex \#5: Find $f^{\prime}(x)$ or $\frac{d y}{d x}$ of the following functions:
a) $f(x)=2 x^{3}+7 x^{6}$
b) $f(x)=(4 x-3)^{2}$
c) $f(x)=\frac{\pi x^{6}}{2}+x-\frac{3}{x}$
d) $f(x)=\frac{(3 x-5)(3 x+5)}{x^{5}}$

Ex \#6: At what point on the curve $y=-x^{2}+3 x+4$ does the tangent line have a slope of 5 ?

Ex \#4: A ball is dropped from the upper observation deck of the CN Tower. The distance fallen, in metres, after t seconds is $s=4.9 t^{2}$. How fast is the ball falling after 3 seconds?

FA TEXTBOOK P83 \#1, 2a-k, 3ace, 4b and P88 1a-j, 3ab, 2ac, 4
MLA TEXTBOOK P83 \# 2lmn, 4cd, 7, 8 and P88 \#1kl, 2bd, 3acd, 5, 6, 7

To learn and apply the PRODUCT rule for differentiation..

VIDEO LINKS: a) https://goo.gl/dpwnaL

b) https://goo.gl/ArF6WU

THE PRODUCT RULE:

- When you are taking the derivative of the product of two expressions, the derivative will be

$$
[f(x) g(x)]^{\prime}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

In other words, the derivative of the product of two expressions will be:
(first expression)(derivative of second expression) + (second expression)(derivative of first expression)

- We can also reword th

NOTE: It's very important to realize that the derivative of a product DOES NOT equal the product of the derivatives

$$
[f(x) g(x)]^{\prime} \neq f^{\prime}(x) g^{\prime}(x)
$$

Ex \#1: Find the derivative, $\frac{d y}{d x}$ if $y=\left(2 x^{3}+7\right)\left(3 x^{2}-x\right)$. Use the product law.

Ex \#2: Differentiate $f(x)=\sqrt{x}(2-3 x)$ using the product law and simplify. Express your answer using a common denominator.

Ex \#3: Find the equation of the tangent line to the graph of $f(x)=\left(3 x^{2}+2\right)\left(2 x^{3}-1\right)$ when $x=1$.

Ex \#4: Find the slope of $y=\left(4 \sqrt{x}+\frac{2}{x^{2}}\right)\left(\sqrt[3]{x}-x^{3}\right)$ at the point $\mathrm{x}=1$

FA TEXTBOOK P 92 \#1, 2abdeh, 3, 5
MLA TEXTBOOK P92 \#6 Shown at right is a graph of the
Plus the following: functions $f(x)$ and $g(x)$. Assume
that $F(x)=f(x) \cdot g(x)$. By studying the graph and using the product rule, determine the value of each of the following.
21. $F^{*}(2)$
22. $F^{\prime \prime}(-4)$
23. $F^{\prime}(0)$
24. $F^{\prime}(3)$
25. If $f(x)=\left(x^{x}+3 x\right)^{3}$, use the product rule to show that

$$
f^{\prime}(x)=5\left(x^{2}+3 x\right)^{4}(2 x+3) .
$$

CALCULUS 30: OUTCOME 4B DAY 3 - THE QUOTIENT RULE (SECTION 2.5)
To learn and apply the QUOTIENT rule for differentiation..
VIDEO LINKS:
a) https://goo.gl/yxPB3X
b) https://goo.gl/QEbwCz

THE QUOTIENT RULE:

- Given a function in the form of a quotient, $F(x)=\frac{f(x)}{g(x)}$, then $F^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$.
(Note that we are using a capital $\mathrm{F}(\mathrm{x})$ for the quotient function)
- In other words, the derivative of the product of two expressions will be:
[(bottom)(derivative of top) - (top)(derivative of bottom)] divided by (bottom squared)
- It is customary NOT to expand the expression in the denominator when applying the quotient rule

Ex \#1: Differentiate $F(x)=\frac{x^{2}+2 x-3}{x^{3}-1}$.

Ex \#2: Find $\frac{d y}{d x}$ if $y=\frac{\sqrt{x}}{1+2 x}$.

Ex \#3: Find the equation of the tangent line to the curve $f(x)=\frac{\sqrt{x}}{x+2}$ at the point $(4,-1)$. Express your answers in GENERAL FORM $(A x+B y+C=0)$.

Ex \#4: Find the coordinates of two points on the graph of the function $f(x)=\frac{10 x}{x^{2}+1}$ at which the tangent line is horizontal.

FA TEXTBOOK P 95 \#1a-I, 2, 3abc, 6
MLA TEXTBOOK P 95 \#2, 5, 7, 8 Plus the following (Please remember that MLA questions could
be found on the test!) Some ice cubes were added to a cup of boiling water. The temperature of the water in degrees Celsius
7 minutes after the ice cubes were added, can be approximated by the function
$T(t)=\frac{20 t^{z}+100 t+200}{t^{2}+t+2}$. Round your answers to two decimal places where necessary.
(a) Find $T(0), T(1)$, and $T(5)$. Interpret your answers.
(b) Find $T^{\prime}(t)$.
(c) Find $T^{\prime}(1)$ and $T^{t}(5)$. Interpret your answers.
(d) Find $\lim _{t \rightarrow \infty} \frac{20 t^{2}+100 t+200}{t^{2}+t+2}$ and interpret your result.

To learn and apply the CHAIN rule for differentiation.

Abstract

VIDEO LINKS: a) https://goo.gl/8rSQrd b) https://goo.gl/cQ9jEG c) https://goo.gl/cJnw2Z

THE CHAIN RULE:

- When we have a function within a function, we need an additional rule called the CHAIN RULE. The chain rule must be used when we have a function whose derivative is not 1 within another function such as a power, a root, or a combination of those. Here are some examples of functions within functions (composite functions)

$$
y=(5 x-4)^{6} \quad y=7\left(x^{5}-4\right)^{7} \quad y=\sqrt{\left(7 x^{5}-8 x+2\right)^{3}}
$$

- We often rewrite the function by rewriting the function using a substitution of u for the "inner" function
let $u=5 x-4$
let $u=x^{5}-4 \quad$ let $u=\left(7 x^{5}-8 x+2\right)$
$y=(u)^{6}$

$$
y=7(u)^{7} \quad y=\sqrt{u^{3}}
$$

- Once we have made the substitution, we take the derivative using the chain rule. Typically, our functions contain x and y variables, so we usually find the derivative of y with respect to x , as in $\frac{d y}{d x}$. As we have changed the variable from x to u in the above questions, we need to adapt the formula to now take the derivative of y with respect to u while taking into account that u is based on a foundatior of the x variable. The chain rule will produce the following:

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

> This means: To find the derivative of the original function y , with respect to the original function in terms of x, you need to

1) Find the derivative of the newly rewritten function y (containing the u) with respect to the variable u. This is the $\frac{d y}{d u}$ part of $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
2) Multiply your answer in step 1 by the derivative of the equation u with respect to the variable x. This is the $\frac{d u}{d x}$ part of $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
3) You now need to go back and replace any remaining u values with the equation that it represents in terms of x. We will often leave this answer fairly unsimplified and it may often contain negative or rational exponents.

Ex \#1: Find $\frac{d y}{d x}$ if $y=\left(2 x^{3}-4 x+3\right)^{10}$
STEP 1: Let $u=$
Therefore our function now looks like

STEP 2: Find the derivative of each of the above boxes with respect to their proper variables:

$$
\frac{d u}{d x}=\square \frac{d y}{d u}=
$$

STEP 3: To find the final answer, $\frac{d y}{d x}$, multiply the above two derivatives together. We usually multiply them in reverse however and put $\frac{d y}{d u}$ first and $\frac{d u}{d x}$ second $\frac{d y}{d x}=$ \qquad
\square

STEP 4: Replace any value of u with the equation in \square

STEP 5: Simplify where appropriate. Combine like terms or expressions/ factor and reduce etc.

How can you write this rule differently?

THE CHAIN RULE: (Think back to the composition of functions: Chapter 10 of PC30)
If $F(x)=f(g(x))$, then $F^{\prime}(x)=f^{\prime}(g(x)) \bullet g^{\prime}(x)$.
In other words: (derivative of outside function)•(derivative of inside function)

THE POWER RULE COMBINED WITH THE CHAIN RULE:

If $\quad F(x)=[f(x)]^{n}$, then $F^{\prime}(x)=n[f(x)]^{n-1} \cdot f^{\prime}(x)$

Reminder: POWER RULE:
If $f(x)=x^{n}, f^{\prime}(x)=n x^{n-1}$

Ex \#2: Differentiate $y=\sqrt[3]{\left(2 x^{5}-1\right)^{2}}$
b) $f(x)=\frac{1}{\sqrt[3]{1-x^{4}}}$

Ex \#3: If $y=u^{10}+u^{5}+2$ where $u=1-3 x^{2}$, find $\left.\frac{d y}{d x}\right]_{x=1}$ by first using $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$.

Now, when $x=1, u=$

So, $\left.\frac{d y}{d x}\right]_{x=1}=$

FA TEXTBOOK P 102 \#1a-h, 3, 4, 7
MLA TEXTBOOK P102 \#5, 9

To combine the chain rule with all other rules for differentiation (power, sum, difference, product, quotient).
VIDEO LINKS: a) https://goo.gl/qhufnM
b) https://goo.gl/rioMJo

Ex \#1: Differentiate:
a) $y=\left(x^{2}+1\right)^{3}(2-3 x)^{4}$
b) $s(t)=\left(\frac{2 t-1}{t+2}\right)^{6}$
c) $F(x)=\sqrt{x+\sqrt{x^{2}+1}}$

FA TEXTBOOK P 102 \#1i-I, 6acegil
MLA TEXTBOOK P102 \#5, 9
b) https://goo.gl/rjoMJo

REVIEW: Converting negative exponents to positive exponents
Ex\#1: $\left(\frac{2 x-1}{x^{2}+1}\right)^{-5}=\quad$ Ex\#2: $\frac{(x+1)^{-\frac{2}{3}}}{3 x^{-4}(x-2)^{2}}=$
Ex \#3: $\frac{1}{2}(x+1)^{-\frac{3}{2}} \cdot 3 x^{-3}(2 x-3)^{2}=$

Factoring (with rational/negative exponents):

Ex \#4: $2 x^{\frac{3}{2}}+4 x^{\frac{1}{2}}-6 x^{-\frac{1}{2}}$

- Find the common factor (if there is one) :
- Find the smallest exponent : \qquad
- Remember that when you divide by the common factor, you subtract your exponent.

Ex \#5: $2 x^{3}(x-2)^{-1}(x+1)^{\frac{3}{4}}-4 x^{2}(x-2)(x+1)^{-\frac{1}{4}}$

Ex \#1: Certain functions can be solved using different methods. To find the derivative of the following functions, what rules could you use? Choose the easiest option and differentiate the functions.
a) $y=\frac{3}{\sqrt{(x-2)^{3}}}$
b) $f(x)=\frac{x\left(x^{2}+3\right)}{(x-2)^{4}}$

Find the derivative of each of the following functions, writing your answers in factored form where possible.

1. $f(x)=2 x^{3}+15 x^{2}-36 x+12$
2. $f(x)=-2 x^{-3}-\frac{1}{2} x^{-2}+x^{-1}+11$
3. $y=\frac{1}{x}+4 x$
(4.) $y=\sqrt{\frac{x}{5}}+\frac{5}{\sqrt{x}}-\frac{x}{\sqrt{5}}$
4. $f(x)=(2 x-3)^{3}(x+1)^{2}$
5. $f(x)=x^{2} \sqrt{1-x^{3}}$
(7.) $y=(x-2) \sqrt{x^{2}-3 x-1}$
8.) $y=4 \sqrt{x-1}-6 \sqrt{x+1}$
6. $f(x)=\frac{x^{2}-3 x}{x^{2}+3}$
(10.) $f(x)=\frac{6}{\sqrt[3]{x^{3}-2}}$
7. $y=x^{3}(2 x-1)(3 x+2)$
(12.) $y=\frac{x(2 x-3)}{x^{2}+2}$
(13.) $f(x)=\left(\frac{2 x}{x+2}\right)^{-2}$
(14. $f(x)=\frac{(x+1)^{2}}{x^{2}-2}$,
(15.) $y=\frac{\sqrt{x}}{x^{2}+1}$
(16. $f(x)=\frac{\sqrt{3-x}}{x^{4}}$
8. $f(x)=\frac{1}{\left(x^{2}-2\right) \sqrt{2 x+3}}$
(18.) $f(x)=\sqrt{\frac{x+4}{x-4}}$

To learn and apply implicit differentiation versus explicit differentiation.
VIDEO LINKS:
a) https://goo.gl/8rSQrd
b) https://goo.gl/cQ9jEG
c) https://goo.gl/cJnw2Z

- So far, our functions have been explicitly defined, which is when y is already isolated.
- Ex: $y=x^{5}+3 x-1$
- We will now be working with implicitly defined functions, where we cannot solve for y .
- Ex: $x^{2}-y^{3}+3 x y=1$

Review of Notations:

$\frac{d}{d x}\left(x^{3}\right)$ means: find the derivative of x^{3} with respect to $\mathrm{x} \cdot \frac{d}{d x}\left(x^{3}\right)=$
$\frac{d}{d x}\left(y^{4}\right)$ means: find the derivative of y^{4} with respect to $\mathrm{x} \cdot \frac{d}{d x}\left(y^{4}\right)=$ This is challenging as there are no x 's

- To take the derivative of a function that is defined implicity, we take the derivaitive from left to right, and wherever there is a value of y in the equation, we need to use the chain rule and multiply that term by $\frac{d y}{d x}$. We normally use the chain rule when taking the derivative of x values but the chain rule of those terms ends up being $\frac{d x}{d x}$ which reduces to 1 .

Ex \#1: Find $\frac{d}{d x}\left(12 y^{-\frac{1}{3}}\right)$.

Ex \#2: Differentiate from left to right with respect to x :
a) $\frac{d}{d x}\left(9 x^{2}-4 y^{-\frac{1}{4}}\right)$
b) $\frac{d}{d x}\left(2 x^{3} y^{4}\right)$

USING IMPLICIT DIFFERENTIATION when working with EQUATIONS containing a mixture of x and y :

STEP 1: Differentiate both sides of the equation, from left to right, with respect to \mathbf{x}.
STEP 2: Collect all the terms with $\frac{d y}{d x}$ on one side of the equation
STEP 3: Factor out the $\frac{d y}{d x}$
STEP 4: Isolate $\frac{d y}{d x}$.
Using implicit differentiation is easier than explicit differentiation. Here is an example as to why:
Ex \#2: If $x^{2}+y^{2}=169$, find $\frac{d y}{d x}$ implicitly. Then, find the equation of the tangent line to this circle at $(12,-5)$.

Ex \#3: Suppose $x^{2} y+2 y^{2}-x=3$. Find $\frac{d y}{d x}$.

Ex \#4: Find the slope and the equation of the tangent line (in standard form) to the curve $x^{3}-3 x^{2} y+y^{2}=3$ at $(-1,4)$

[^0]FA TEXTBOOK P 107 \#1, 2a-d, f, 3, 5a MLA TEXTBOOK P107 \# 6, 7

To learn and apply higher order derivatives.

VIDEO LINKS: a) https://goo.gl/rAKqEw

b) https://goo.gl/VGMa9o

Higher Order Derivatives:

- We can take the derivative of a derivative function, and the derivative of that function and so on.
- A first derivative is written as $f^{\prime}(x)$ or $\frac{d y}{d x}$
- A first derivative represents the slope of a tangent line or rate of change (how the slope of the original function changes). A common example of the first derivative is that velocity is a first derivative of a distance function.
- A second derivative is written as $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$
- A second derivative measures how fast the first derivative function (often velocity) is changing, specifically how the rate of change/slope of the tangent line of the original function changes. A common example of the second derivative is acceleration in that acceleration is the second derivative of a distance function (but the first derivative of a velocity function)
- A third derivative is written as $f^{\prime \prime \prime}(x)$ or $\frac{d^{3} y}{d x^{3}}$.
- An example of a third derivative measures how fast acceleration is changing with respect to time. In physics this can also be known as jerk/jolt/surge or lurch.
- If a distance formula $y=s(t)$, then

$$
\begin{aligned}
& y^{\prime}=v(t) \text { and } \\
& y^{\prime \prime}=a(t) \text {. }
\end{aligned}
$$

- If, however, the initial function $y=v(t)$ then it's first derivative $y^{\prime}=a(t)$

Ex \#1: Find $\frac{d^{2} y}{d x^{2}}$ if $y=x^{6}$

Ex \#2: Find the second derivative of $f(x)=5 x^{2}+\sqrt{x}$

Ex \#3: \quad Find $f^{\prime \prime}(1)$ if $f(x)=\left(2-x^{2}\right)^{10}$

Ex \#4: If $x^{3}+y^{3}=5$, use implicit differentiation to find $\frac{d^{2} y}{d x^{2}}$.

FA TEXTBOOK P 111 \#1odd, 2, 3, 4, 5
MLA TEXTBOOK P 111 \#7, 8

OUGONEAB BZyIEW ASS]GNWENW

P 112 \#4a-n, 5a, 7abc, 8, 9ade PLUS the following:

1. Find the coordinates of two points on the graph of $f(x)=4 x^{3}+x^{2}+2 x+8$ at which the slope of the tangent line is 4.
2. Find $\frac{d^{2} y}{d x^{2}}$ given the equation $2 y^{2}-x y=6$

Solutions: 1. $\left(-\frac{1}{2}, \frac{3}{4}\right)$ and $\left(\frac{1}{3}, \frac{44}{27}\right)$
2. $\frac{d^{2} y}{d x^{2}}=\frac{12}{(4 y-x)^{3}}$

SOLUTIONS TO: OUTCOME 4B DAY 2 ASSIGNMENT

EXTRA QUESTIONS:

21. $F^{*}(2)=f^{\prime}(2) g(2)+f(2) g^{\prime}(2)=(3)(-1)+(1)(-1)=-4 \quad 22 .-\frac{3}{2}$ 23.2 24. $F^{\prime}(3)$ does not exist since $f^{\prime}(3)$ and $g^{\prime}(3)$ do not exist.
22. Let $g(x)=x^{2}+3 x$. Then $g^{\prime}(x)=2 x+3$.

Now $f(x)=\left(x^{2}+3 x\right)^{3}=[g(x)]^{3}=[g(x)][g(x)][g(x)][g(x)][g(x)]$.
$\therefore f^{\prime}(x)=\left[g^{2}(x)\right][g(x)][g(x)][g(x)][g(x)]+[g(x)]\left[g^{\prime}(x)\right][g(x)][g(x)][g(x)]+\ldots$ $+[g(x)][g(x)][g(x)][g(x)]\left[g^{\prime}(x)\right]$ (there are 5 such terms)
$=5[g(x)]^{4} g^{*}(x)=5\left(x^{2}+3 x\right)^{4}(2 x+3)$

SOLUTIONS TO: OUTCOME 4B DAY 3 ASSIGNMENT

EXTRA QUESTIONS:

(a) $T(0)=100, T(1)=80, T(5)=37.5$;
intitilly the water was $100^{\circ} \mathrm{C}$, after 1 minute it was $80^{\circ} \mathrm{C}$, after 5 minutes ft was $37.5^{\circ} \mathrm{C}$ (b) $\frac{-80 t^{2}-320 t}{\left(t^{2}+t+2\right)^{2}}$
(c) $T^{\prime}(1)=-25, T^{\prime}(5)=-3.52 \%$ after 1 minute the temperature is falling at a rate of $25^{\circ} \mathrm{C} / \mathrm{min}$ and after 5 minutes the temperature is falling at a rate of $3.52^{\circ} \mathrm{C} / \mathrm{min}$. (d) $20 ;$ As time passes the temperature of the water cools towards $20^{\circ} \mathrm{C}$, likely the room temperature.

SOLUTIONS TO: OUTCOME 4B DAY 6 ASSIGNMENT

1. $6(x-1)(x+6)$
2. $-x^{-4}(x-3)(x+2)$
3. $x^{-2}(2 x-1)(2 x+1)$
4. $\frac{1}{2 \sqrt{5}} x^{-4 / 2}-\frac{5}{2} x^{-5 / 3}-\frac{1}{\sqrt{5}}$
5. $10 x(x+1)(2 x-3)^{2}$
6. $-x\left(3 x^{3}-2\right)\left(1-x^{2}\right)^{-4 / 2}$
7. $\frac{1}{2}\left(4 x^{2}-13 x+4\right)\left(x^{2}-3 x-1\right)^{-1 / 2}$
8. $2(x-1)^{-1 / 2}-3(x+1)^{-1 / 2} 9 \cdot \frac{3(x-1)(x+3)}{\left(x^{2}+3\right)^{2}}$
9. $-6 x^{2}\left(x^{3}-2\right)^{-4 / 3}$
10. $2 x^{2}\left(15 x^{2}+2 x-3\right)$
11. $\frac{3 x^{2}+8 x-6}{\left(x^{2}+2\right)^{2}}$
12. $\frac{-(x+2)}{x^{3}}$
13. $\frac{-2(x+1)(x+2)}{\left(x^{2}-2\right)^{2}}$
14. $\frac{1-3 x^{2}}{2 x^{1 / 2}\left(x^{2}+1\right)^{2}}$
15. $\frac{1}{2} x^{-\frac{1}{3}}(7 x-24)(3-x)^{-4 / 4}$
16. $-\left(5 x^{2}+6 x-2\right)\left(x^{2}-2\right)^{-2}(2 x+3)^{-3 / 2}$ 18. $-4(x+4)^{-1 / 2}(x-4)^{-3 / 2}$

[^0]: (0) U(C) OJJAB D:

