To review properties of logarithms and take the derivative of logarithmic functions.
Note: Transcendental functions are non algebraic functions (logarithmic functions, exponential functions and trigonometric functions are all examples of transcendental functions)
REVIEW:

- A logarithmic function is the inverse of an exponential function.
- If $\mathrm{y}=2^{\mathrm{x}}$ is a given exponential function, it's inverse is the logarithmic function $x=2^{y}$. Although this last function is a logarithmic function, it is still written in exponential form and is very challenging to work with as we cannot use traditional algebraic techniques to solve for y . Therefore we rewrite the equation into an equivalent (but different looking) logarithmic form

$$
x=2^{y} \quad \Leftrightarrow \quad y=\log _{2} x
$$

RULES OF LOGARITHMS:

- $\quad \log _{c} 1=0$ since in exponential form $c^{0}=1$.
- $\log _{c} c=1$ since in exponential form $c^{1}=c$
- $\log _{c} c^{x}=x$ since in exponential form $c^{x}=c^{x}$
- $c^{\log _{c} x}=x, x>0$, since in logarithmic form $\log _{c} x=\log _{c} x$

PROPERTIES OF LOGARITHMS:

Property Name	In Symbols	In Words
1. Product Property	$\log _{b}(X Y)=\log _{b} X+\log _{b} Y$	The logarithm of a product is the sum of the logarithms of the numbers in the product.
2. Quotient Property	$\log _{6}\left(\frac{X}{Y}\right)=\log _{5} X-\log _{b} Y$	The logarithm of a quotient is the difference between the logarithm of the numerator and the logarithm of the denominator:
3. Power Property	$\log _{2}\left(X^{8}\right)=k \log _{k} X$	The logarithm of a power is the exponent multiplied by the logarithm of the base.
4. Change Of Base	$\log _{c} X=\frac{\log X}{\log c}$	To find the logarithm of a number X in base c, divide the common logarithm of X by the common logarithon of c. (Applying this property would. likely require a calculator.)

REVIEW Example \#1: Evaluate the following logarithms:
a) $\log _{2} 8$
b) $\log _{3} 81$
c) $\log _{9} 9$
d) $\log _{3} \frac{1}{9}$
e) $\log _{5}(-25)$
f) $\log _{10} 1000$

Example \#3: Evaluate $\log _{4} 9$ to five decimal places

Example \#2: Rewrite as a single log and evaluate.
a) $4 \log _{4} 2-2 \log _{4} 8$
b) $\log _{6} 8+\log _{6} 9-\log _{6} 2$
c) $3 \log _{\frac{2}{3}} 2-3 \log _{\frac{2}{3}} 3$
d) $\log _{7} 7 \sqrt{7}$

The number \mathbf{e} is a famous irrational number, and is one of the most important numbers in mathematics.

The first few digits are:

$$
2.7182818284590452353602874713527 \text { (and more ...) }
$$

It is often called Euler's number after Leonhard Euler (pronounced "Oiler").
\mathbf{e} is the base of the Natural Logarithms (invented by John Napier).

Calculating

There are many ways of calculating the value of \mathbf{e}, but none of them ever give a totally exact answer, because \mathbf{e} is irrational (not the ratio of two integers).

But it is known to over 1 trillion digits of accuracy!
For example, the value of $(1+1 / n)^{n}$ approaches \mathbf{e} as n gets bigger and bigger:

n	$(1+1 / \mathrm{n})^{\mathrm{n}}$
1	2.00000
2	2.25000
5	2.48832
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827

Another Calculation

The value of e is also equal to $\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\ldots$ (etc)
(Note: "!" means factorial)
The first few terms add up to: $1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}=2.718055556$
In fact Euler himself used this method to calculate e to 18 decimal places.
The value of e can be calculated by finding $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$. We can see in the diagram to the right that

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \approx 2.71827 \ldots
$$

Growth

\mathbf{e} is used in the "Natural" Exponential Function:

DIFFERENT BASES OF LOGARITHMS

- Up until this point, we have discussed logs with any base b of the form $y=\log _{b} u$
- From PC 30 you should remember that when we are speaking of a base 10 logarithm where $b=10$, it is called the common logarithm and we don't actually write the 10 . Therefore a question such as $\log _{10} \mathrm{x}$ will actually appear as logx
- When the number known as e is used as the base, where $e=2.718$....., this is known as the natural logarithm $\log _{\mathrm{e}} \mathrm{x}$. Due to its importance, it actually has its own new form and we say that $\log _{e} x=\ln x$

Example \#4: Evaluate the following to five decimal places.
a) $\ln 7$
b) $\ln 10000$
c) $\ln 1$

Example \#5: Use the definition of a logarithm to solve for x
a) $\log _{3} x=-1$
b) $\ln x=2$
c) $2 \ln (x+1)=-1$

THE DERIVATIVE OF A LOG FUNCTION WITH BASE b: $\mathbf{y}=\log _{\mathrm{b}} \mathbf{u}$
If $y=\log _{b} u$, then the derivative is $\frac{d y}{d x}=\left(\frac{1}{u}\right)\left(\log _{b} e\right)\left(\frac{d u}{d x}\right)$

- In words this means that the derivative of the log of a function " u " is equal to the reciprocal of u, multiplied by the logarithm of the number e to the base b, multiplied by the derivative of the function " u "

Example \#6: Find the derivative of the following logarithmic functions
a) $y=\log _{5} x$
b) $y=\log _{6} x^{9}$
c) $y=12 \log _{7}\left(x^{3}+4 x\right)$
d) $y=\log _{8}\left(\frac{2 x^{3}}{x^{2}+3}\right)$

END OF DAY 1 NOTES

Finding the derivative of Inx:

- What mathematical rule do we use to evaluate the following?
a) $\log _{4} 4$
b) $\log _{7} 7$
c) $\log 10$
- How can we use that same rule to evaluate $\log _{e} e$?

THE DERIVATIVE OF A LOG FUNCTION WITH BASE $e: y=\operatorname{lnx}\left(\operatorname{lor} y=\log _{\mathrm{e}} \mathrm{u}\right)$

- If $y=\log _{e} u=\ln x$, then the derivative is $\frac{d y}{d x}=\left(\frac{1}{u}\right)\left(\log _{e} e\right)\left(\frac{d u}{d x}\right)$. Since we have established that $\log _{e} e=1$, we are actually left with the following derivative formula :
- Given $y=\ln x, \frac{d y}{d x}=\left(\frac{1}{u}\right)\left(\frac{d u}{d x}\right)$

Example \#7: Find the derivative of each of the following functions
a) $f(x)=\ln \left(x^{9}\right)$
b) $y=8 \ln (4 x-5)$
c) $y=\ln 7$
d) $f(x)=\ln \left(\frac{5 x^{2}}{2 x-1}\right)$
e) $f(x)=\ln \sqrt[3]{6 x-5}$

Example \#8: Find the slope of the tangent line to the graph of the function $\mathrm{y}=3 \ln \mathrm{x}$ at the point $\mathrm{x}=4$

Example \#9: Find the derivative of the function $f(x)=2 x^{3} \ln \left(x^{2}+4\right)$

Day 1 Assignment:

- Review Questions from PC 30 1a-h, 2acegjl, 3acegik, 5 a (Do as many as you need - you will need to know and use all this info)
- New Questions: 1ijkIn, 2bdfhi, 3bdh, 4abcdefgj, 5bcd, 6acd, 7

Day 2 Assignment : 8acfijlmoq, 9abcefghijkl, 12, 15
NOU Jhts is Secton 8,3 \& 8,4 Jo Jext

CALCULUS 30: OUTCOME 7 DAY 3 - DERIVATIVES OF EXPONENTIAL FUNCTIONS (TEXT: $8.1 \& 8.2$)
To review properties of logarithms and take the derivative of logarithmic functions.

THE DERIVATIVE OF AN EXPONENTIAL FUNCTION y = bu

- If $y=b^{u}$ where u is a function of x then the derivative is $\frac{d y}{d x}=\left(b^{u}\right)(\ln b)\left(\frac{d u}{d x}\right)$

THE DERIVATIVE OF AN EXPONENTIAL FUNCTION y = eu

- If $y=e^{u}$ where u is a function of x then the derivative is $\frac{d y}{d x}=\left(e^{u}\right)\left(\frac{d u}{d x}\right)$

Example \#1: Find the derivative of the following functions:
a) $y=4^{5 x}$
b) $y=2^{x^{2}+5 x}$
c) $y=x^{3} \cdot 6^{2 x-5}$

Example \#2: Find the derivative of the following:
a) $y=e^{x^{4}}$
b) $y=7 e^{3 x^{2}+5 x}$
c) $f(x)=x^{3} e^{x^{2}}$
d) $y=e^{\frac{5}{x}}$
e) $y=\frac{7 e^{2 x^{2}}}{x^{2}}$
f) $y=\left(e^{x}\right)^{4}$
g) $y=e^{5}$

PROPERTIES OF LOGARITHMS AND EXPONENTS

$\log _{b} b^{u}=u$
$\ln e^{u}=u\left(\right.$ or $\left.\log _{e} e^{u}=u\right)$
$b^{\log _{b} u}=u$
$e^{\ln u}=u$

Example \#3: Find the following derivatives
a) $y=\log _{4} 4^{7 x+1}$
b) $f(x)=2 x\left(\log _{5} 5^{x^{2}-4 x+3}\right)$
c) $y=\ln e^{4 x}$
d) $y=x \ln e^{\sqrt{x}}$
e) $y=2^{\log _{2}(x+3)^{4}}$
f) $y=e^{\ln 4 x}$
g) $y=e^{6 \ln x}$
h) $f(x)=\left(\ln e^{x^{4}}\right)\left(e^{\ln x^{6}}\right)$

Example \#4: Find the open interval(s) on which the function $f(x)=x^{3} e^{x}$ is increasing and decreasing, and find the coordinates of any relative extrema.

OUNCONJ 7 DAJ 3 ASS (GNJJ $20 d d, 4 a, 5 a, 6,9,14,15,17,19,2,1,23,25,27,28,30,34,32,35,36,38$ Notey whls is secton 8,3 \& 8,4 fo Joxt

To take the limits of some specific trigonometric functions.
Using what is called THE SQUEEZE THEOREM, we can develop some rules that allow us s to take the limit of particular trig functions where substitution gives us indeterminate values, and where algebraic techniques don't apply. (Note: we do not have time in the course to develop the squeeze theorem and apply it to develop the following rules. If you know that you will be taking Calculus in University, I highly recommend you watch the following videos so that you have some idea of how this process works!)

- https://bit.ly/2KOR6Bs https://bit.ly/1t8dbj9

IMPORTANT LIMITS OF TRIGONOMETRIC FUNCTIONS:
a) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
b) $\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1$
C) $\lim _{x \rightarrow 0} \frac{\sin k x}{k x}=1$
d) $\lim _{x \rightarrow 0} \frac{k x}{\sin k x}=1$
$\begin{array}{ll}\text { e) } \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0 & \text { f) } \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0\end{array}$

Ex \#1: Use the above rules to assist in finding the following limits:
a) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
b) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 7 x}$
c) $\lim _{x \rightarrow 0} \frac{\tan x}{2 x}$
d) $\lim _{x \rightarrow 0} \frac{x^{2}}{\tan x}$
e) $\lim _{x \rightarrow 0} \frac{1-\cos x}{\tan x}$
f) $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x}$
g) $\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x \cos x}$

FA P 306 \# 7 - 11, 15, 17, 18, 21 - 24, 26 - 28, 31, 32, 34, 35

CALCULUS 30: OUTCOME 7 DAY 5 - DERIVATIVES OF SINE \& COSINE
(TEXTBOOK : 7.2)

To find and apply the derivatives of sine and cosine functions.

DERIVATIVES OF SINE AND COSINE (Valid only when the angle is measured in radians:

- If $y=\sin u$ then $\frac{d y}{d x}=\cos u \frac{d u}{d x}$
- If If $y=\cos u$ then $\frac{d y}{d x}=-\sin u \frac{d u}{d x}$

Ex \#1: Find the derivative of each of the following:
a) $y=\sin (5 x+2)$
b) $y=-7 \sin \left(x^{3}\right)$
c) $y=-4 \cos ^{2} 6 x$
d) $y=3 \sin \left(5 e^{2 x}\right)$
e) $y=\ln \left[\cos \left(\frac{\pi}{3}\right)\right]$

Ex \#2: Find the slope of the tangent line to $y=\sin x$ at $x=\frac{5 \pi}{4}$

Ex \#3: Find the derivative of the following:
a) $y=8 \sin ^{4} 6 x$
b) $y=\sqrt{\sin 5 x}$
c) $y=\left(4 x^{3}+5\right) \sin 8 x$
d) $f(x)=2 \sin 3 x \cos 4 x$
e) $y=\cos ^{3}\left(\sin 3 x^{2}\right)$
f) $y=\frac{2^{\cos 7 x^{2}}}{e^{3 x}}$

Ex \#4: If $\sin x+\sin y=1$, use implicit differentiation to find the derivative of y with respect to x.

Ex \#5: Find the coordinates of any relative extrema in the interval $[0,2 \pi]$ for the function $f(x)=x+2 \sin x$

FA P 313 \#1a-r, 2ac (use implicit differentiation), 3a, 4a, 5a PLUS THE FOLLOWING:

1. $f(x)=e^{\cos 3 x}$
2. $f(x)=4 \ln (\cos x)$
3) $f(x)=\ln \left(\sin ^{2} x\right)$

VIDEO LINKS:

OUTCOME 7 DAY 1 \& 2 Derivatives of Logarithms

Review of Logarithms:
https://bit./y/2x3DhwJ https://bit./y/2GH8bKQ https://bit./y/2khsB4j

Derivatives of Logarithms
Mr. S
https://bit.Iy/2s67CoE https://bit.ly/2IHrmpO

CC
https://bit.Iy/2LIWWLH

OUTCOME 7 DAY 3 - Derivatives of Exponents
Mr. S https://bit.|y/2|KqzbW
CC https://bit.ly/2KLeNKL

DAY 4 - Limits of Trig Functions
Mr. S https://bit.ly/2IGfwiK
CC https://bit.Iy/2LrjJFF

DAY 5 - Derivatives of Sin and Cos
Mr. S https://bit.ly/2kiuD4I
CC https://bit.ly/2x9aQ02

