AP ${ }^{\circledR}$ CALCULUS AB 2012 SCORING GUIDELINES

Question 5

The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B) .
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.
(b) Find $\frac{d^{2} B}{d t^{2}}$ in terms of B. Use $\frac{d^{2} B}{d t^{2}}$ to explain why the graph of B cannot resemble the following graph.
(c) Use separation of variables to find $y=B(t)$, the particular solution to the differential equation with initial condition $B(0)=20$.

(a) $\left.\frac{d B}{d t}\right|_{B=40}=\frac{1}{5}(60)=12$
$\left.\frac{d B}{d t}\right|_{B=70}=\frac{1}{5}(30)=6$
Because $\left.\frac{d B}{d t}\right|_{B=40}>\left.\frac{d B}{d t}\right|_{B=70}$, the bird is gaining
weight faster when it weighs 40 grams.
(b) $\frac{d^{2} B}{d t^{2}}=-\frac{1}{5} \frac{d B}{d t}=-\frac{1}{5} \cdot \frac{1}{5}(100-B)=-\frac{1}{25}(100-B)$

Therefore, the graph of B is concave down for
$2:\left\{\begin{array}{l}1: \text { uses } \frac{d B}{d t} \\ 1: \text { answer with reason }\end{array}\right.$ $20 \leq B<100$. A portion of the given graph is concave up.
(c) $\frac{d B}{d t}=\frac{1}{5}(100-B)$
$\int \frac{1}{100-B} d B=\int \frac{1}{5} d t$
$-\ln |100-B|=\frac{1}{5} t+C$
Because $20 \leq B<100,|100-B|=100-B$.
$-\ln (100-20)=\frac{1}{5}(0)+C \Rightarrow-\ln (80)=C$
$100-B=80 e^{-t / 5}$
$B(t)=100-80 e^{-t / 5}, \quad t \geq 0$
$2:\left\{\begin{array}{l}1: \frac{d^{2} B}{d t^{2}} \text { in terms of } B \\ 1: \text { explanation }\end{array}\right.$
$5:\left\{\begin{array}{l}1: \text { separation of variables } \\ 1: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { solves for } B\end{array}\right.$

Note: $\max 2 / 5$ [1-1-0-0-0] if no constant of integration

Note: $0 / 5$ if no separation of variables
5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B) .
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your
reasoning.
when it is 40 grams: $\frac{d B}{d t}=\frac{1}{5}(100-40)=12 \mathrm{~g} /$ day
when it is 70 grams: $\frac{d B}{d t}=\frac{1}{5}(100-70)=6 \mathrm{~g} / \mathrm{day}$
so the bird is gaining weight faster when it weighs 40 grams. $\begin{aligned} & \begin{array}{l}\text { (b) Find } \frac{d^{2} B}{d t^{2}} \text { in terms of } B \text {. Use } \frac{d^{2} B}{d t^{2}} \text { to explain why the graph of } B \text { cannot resemble the following graph. } \\ \\ \frac{d^{2} B}{d t^{2}}\end{array}=-\frac{1}{5} \cdot \frac{d B}{d t} B \\ &=-\frac{1}{5}\left(20-\frac{1}{5} B\right) \\ &=\frac{1}{25} B-4 \\ & \frac{1}{25} B-4>0>100\end{aligned}$
(c) Use separation of variables to find $y=B(t)$, the particular solution to the differential equation with initial condition $B(0)=20$.

$$
\begin{aligned}
\frac{d B}{d t} & =\frac{1}{5}(100-B) \\
\frac{1}{\frac{1}{5}(100-B)} d B & =d t \\
\frac{5}{100-B} d B & =d t \\
\int \frac{5}{100-B} d B & =\int 1 d t \\
-5 \ln [100-B] & =t+c \\
\ln (100-B) & =-\frac{1}{5}(t+C) \\
100-B & =e^{-\frac{1}{5}(t+c)} \\
B & =100-e^{-\frac{1}{5}(t+c)} \\
20 & =100-e^{-\frac{1}{5} c} \\
e^{-\frac{1}{5} c} & =80 \\
1-\frac{1}{5} C & =\ln 80 \\
C & =-5 \ln 80 \\
\therefore B & =100-e^{-\frac{1}{5}(t-5 \ln 80)}
\end{aligned}
$$

$\begin{array}{llllllllll}5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5\end{array}$

NO CALCULATOR ALLOWED
5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B) .
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.

$$
\begin{aligned}
& W_{\text {aught }=40 \Rightarrow \frac{d B}{d t}=\frac{1}{5}(100-40)=\frac{60}{5} \text { grown ide }} \begin{array}{r}
\text { Weyht }=70 \Rightarrow \frac{d B}{d t}=\frac{1}{5}(100-70)=\frac{30}{5} \text { grouldy. } \\
\qquad \frac{60}{5}>\frac{30}{5} \Rightarrow \text { at weight }=40 \text { grams, the tate of } \\
\text { change of Bro weight is faster. }
\end{array}
\end{aligned}
$$

(b) Find $\frac{d^{2} B}{d t^{2}}$ in terms of B. Use $\frac{d^{2} B}{d t^{2}}$ to explain why the graph of B cannot resemble the following graph.

(c) Use separation of variables to find $y=B(t)$, the particular solution to the differential equation with initial condition $B(0)=20$.

$$
\begin{aligned}
& \frac{d B}{d t}=\frac{1}{\rho}(100-B) \\
& \int \frac{d B}{100-B}=\int \frac{1}{5} d t \\
& \ln (100-B)=\frac{t}{5}+C \\
& 100-B=C e^{t / 5} \\
& B(0)=20 \Rightarrow 100-20=C e^{0} \Rightarrow C=80 \\
& \Rightarrow \text { partalar solutan: } 100-B=80 e^{+15}
\end{aligned}
$$

5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time $t=0$, when the bird is first weighed, its weight is 20 grams. If $B(t)$ is the weight of the bird, in grams, at time t days after it is first weighed, then

$$
\frac{d B}{d t}=\frac{1}{5}(100-B) .
$$

Let $y=B(t)$ be the solution to the differential equation above with initial condition $B(0)=20$.
(a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning.

$$
\begin{gathered}
\frac{1}{5}(100-40) \frac{60}{5} 12 \text { gains weight footer when } \\
\frac{1}{5}(100-70) \frac{30}{5} 6 \text { Highs } 40 \text { grams because } \\
\text { Its growing at truce the rate } \\
\text { is when it } 5 \text { grograms. }
\end{gathered}
$$

(b) Find $\frac{d^{2} B}{d t^{2}}$ in terms of B. Use $\frac{d^{2} B}{d t^{2}}$ to explain why the graph of B cannot resemble the following graph.

20- $\frac{3}{5}$

Time (days)

(c) Use separation of variables to find $y=B(t)$, the particular solution to the differential equation with initial condition $B(0)=20$.

$$
\begin{aligned}
& \int \frac{1}{5} d t=\int \frac{d B}{100-B} \\
& C+\frac{1}{5} t=-\frac{1}{2}(100-B)^{-2} \\
& \frac{1}{5} t+C=\frac{-1}{2(100-B)^{2}} \\
& -2(5 t+C)=\frac{1}{100-B^{2}} \\
& 100-B^{2}=\frac{1}{-2(5 t+C)} \\
& 100+\frac{1}{+2\left(\frac{1}{c}+C\right)}=B^{2} \\
& \sqrt{\left.100+\frac{1}{2},+0\right)}=B \\
& \frac{20}{20} \\
& \sqrt{100+\frac{1}{4(c)}}=20 \\
& B=\sqrt{100+\frac{1}{2\left(5 t+\frac{2}{3 t}\right)}} \\
& \frac{1}{2 c}=300 \\
& \frac{\frac{1}{300}-2 c}{2} \\
& c=\frac{2}{300}
\end{aligned}
$$

AP ${ }^{\oplus}$ CALCULUS AB
 2012 SCORING COMMENTARY

Question 5

Overview

The context of this problem is weight gain of a baby bird. At time $t=0$, when the bird is first weighed, its weight is 20 grams. A function B modeling the weight of the bird satisfies $\frac{d B}{d t}=\frac{1}{5}(100-B)$, where t is measured in days since the bird was first weighed. Part (a) asked whether the bird is gaining weight faster when it weighs 40 grams or when it weighs 70 grams. Students had to evaluate and compare $\frac{d B}{d t}$ for these two values of B. Part (b) asked for $\frac{d^{2} B}{d t^{2}}$ in terms of B. Students should have used a sign analysis of the second derivative to explain why the graph of B cannot resemble the given graph. Part (c) asked students to use separation of variables to solve the initial value problem $\frac{d B}{d t}=\frac{1}{5}(100-B)$ with $B(0)=20$ to find $B(t)$.

Sample: 5A

Score: 9

The student earned all 9 points. Note that in part (c) the student does not need absolute value on the fifth line because $B(0)=20$.

Sample: 5B
 Score: 6

The student earned 6 points: 2 points in part (a), 1 point in part (b), and 3 points in part (c). In part (a) the student's work is correct. In part (b) the first point was not earned because the student does not present $\frac{d^{2} B}{d t^{2}}$ in terms of B. The student's correct appeal to the chain rule and correct explanation earned the second point. In part (c) the student earned the first point with a correct separation on the second line. The second point was not earned because the student's antiderivative on the left-hand side on the third line is incorrect. (The antiderivative should be $-\ln (100-B)$, with no absolute value needed.) A student who did not earn the second point is not eligible for the fifth point. The student earned the third point on the third line and the fourth point on the fifth line for correctly substituting 0 for t and 20 for B.

Sample: 5C
 Score: 3

The student earned 3 points: 2 points in part (a), no points in part (b), and 1 point in part (c). In part (a) the student's work is correct. In part (b) the student makes a chain rule error and did not earn the first point. The student is not eligible for the second point in part (b). In part (c) the student presents a correct separation on the first line and earned the first point. The student's incorrect B-antiderivative makes the student ineligible for any additional points in part (c).

