Ch 7 Review: P 377 1-7 Odd, 11-17 odd, 25-31 odd, 35, 37, 39-42, 49, 51, 53, 55
Chapter 7 Comparison to the AP Calculus Curriculum

EU 2.3: The derivative has multiple interpretations and applications	LO 2.3D: Solve problems involving rates of change in applied contexts.	EK 2.3D1: The derivative can be used to express information about rates of change in applied contexts.
involve instantaneous rates of change.	LO 2.3E: Verify solutions to differential	EK 2.3E1: Solutions to differential equations are functions or families of functions.
(continued)		EK 2.3E2: Derivatives can be used to verify that a function is a solution to a given differential equation.
	LO 2.3F: Estimate solutions to differential equations.	EK 2.3F1: Slope fields provide visual clues to the behavior of solutions to first order differential equations.

2.3 D1

- Rates of change - The most common rate of change you will come across is speed or velocity. If you are confused with a given rate of change (for example the rate a volume increases over time), use an analogy to relate it to speed, distance and acceleration. Always be prepared to describe the units involved in a problem.
- The basics:
- Distance or position is often given by a function labeled as $s(t)$ or $x(t)$. Distance is the amount travelled without regard to direction, while position (or displacement) involves direction. Most often a negative displacement on the x-axis will involve movement to the left, but that depends on the situation described.
- Velocity is the rate of change with respect to time where positive and negative values reference the direction, while speed does not include direction.
- Acceleration describes the rate at which speed or velocity is changing.
- Velocity: $v(t)=\frac{d x}{d t}, v(t)=x^{\prime}(t)$, or $v(t)=s^{\prime}(t)$.
- Acceleration: $a(t)=\frac{d^{2} x}{d t^{2}}, a(t)=\frac{d v}{d t}, a(t)=x^{\prime \prime}(t)$, or $a(t)=v^{\prime}(t)$.
- Displacement (change in position) $=\int_{a}^{b} v(t) d t=x(b)-x(a)$.
- Distance traveled $=\int_{a}^{b}|v(t)| d t$

2.3 E1

- If an initial condition is given, the solution to a differential equation will be one specific function.

Otherwise it will be a general solution.

- ex. The solution to the differential equation $\frac{d y}{d x}=2 x$ is the general solution $x^{2}+\mathrm{C}$ since an initial condition is not given.

2.3 E 2

- You can use derivatives to verify the solution to a differential equation.
- ex. Given that $y=x^{3}-5 x$, verify if y is a solution to the following differential equations:

$$
2 x y^{\prime \prime}-4 y^{\prime}-20=0 \quad 2 x \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+20=0
$$

2.3 F1 - Be prepared to make a slope field, or match a given slope field to a differential equation. Usually it is easiest to look for values where the slope is zero or undefined and proceed from there.

3.3 B5

EU 3.3: The

Fundamental Theorem
of Calculus, which
has two distinct
formulations, connects differentiation and integration.

EK 3.3B5: Techniques for finding antiderivatives include algebraic manipulation such as long division and completing the square, substitution of variables, $(B C)$ integration

- Be able to integrate using substitution. Also, sometimes you might have to manipulate an equation before integrating.
ex. $\int_{0}^{1} \frac{x^{2}+5 x+6}{x+2} d x$
$\int_{0}^{1} \frac{x+4}{x+2} d x$
$\int_{0}^{1} \frac{3 x^{3}+8 x}{x^{2}+2} d x$

EU 3.5:
Antidifferentiation is an underlying concep involved in solving separable differential equations. Solving separable differential equations involves determining a function or relation given its rate of change.

LO 3.5A: Analyze differential equations to obtain general and specific solutions.

EK 3.5A1: Antidifferentiation can be used to find specific solutions to differential equations with given initial conditions, including applications to motion along a line, exponential growth and decay, (BC) and logistic growth.

EK 3.5A2: Some differential equations can be solved by separation of variables.

EK 3.5A3: Solutions to differential equations may be subject to domain restrictions.

EK 3.5A4: The function F defined by $F(x)=c+\int_{a}^{x} f(t) d t$ is a general solution to the differential equation $\frac{d y}{d x}=f(x)$, and $F(x)=y_{0}+\int_{a}^{x} f(t) d t$ is a particular solution to the differential equation $\frac{d y}{d x}=f(x)$ satisfying $F(a)=y_{0}$.

LO 3.5B: Interpret, create, and solve differential equations from problems in context.

EK 3.5B1: The model for exponential growth and decay that arises from the statement "The rate of change of a quantity is proportional to the size of the quantity" is $\frac{d y}{d t}=k y$.

