3.1 Day 1 Assignment: Following Questions 1 - 5 plus Textbook P 105 \#1-12, 17, 18

For problems $1-5$, use the function $f(x)=\frac{x}{x+2}$.

1. Find $f^{\prime}(x)$ by finding $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
2. Find the slope of the tangent line drawn to the graph of $f(x)$ at $x=-2$.
3. Find the slope of the tangent line drawn to the graph of $f(x)$ at $x=-1$.
4. Find the equation of the tangent line drawn to the graph of $f(x)$ at $x=-1$.
5. Find $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$, where $a=-1$.

3.1 Day 2 Assignment: Following Questions \& Textbook Questions P105 \#13-16, 21, 22, 24, 25, 26, 31
6. The line defined by the equation $2 y+3=-\frac{2}{3}(x-3)$ is tangent to the graph of $g(x)$ at $x=-3$. What is the value of

$$
\lim _{x \rightarrow-3} \frac{g(x)-g(-3)}{x+3} \text { ? Show your work and explain your reasoning. }
$$

Use the graph of $f(x)$ pictured to the right to perform the actions in exercises 2-6. Give written explanations for your choices.
2. Label a point, A, on the graph of $y=f(x)$ where the derivative is negative.
3. Label a point, B, on the graph of $y=f(x)$ where the value of the function is negative.
4. Label a point, C, on the graph of $y=f(x)$ where the derivative is greatest in value.
5. Label a point, D, on the graph of $y=f(x)$ where the derivative is zero.
6. Label two different points, E and F , on the graph of $y=f(x)$ where the values of the derivative are opposites.

The table below represents values on the graph of a cubic polynomial function, $h(x)$. Use the table to complete exercises 7-9.

x	-3	-2	-1	0	1	2	4
$h(x)$	-24	0	8	6	0	-4	18

7. Two of the zeros of $h(x)$ are listed in the table. Between which two values of x does the Intermediate Value Theorem guarantee that a third value of x exists such that $h(x)=0$? Explain your reasoning.
8. Estimate the value of $h^{\prime}(1.5)$. Based on this value, describe the behavior of $h(x)$ at $x=1.5$. Justify your reasoning
9. Estimate the value of $h^{\prime}(-1.75)$. Based on this value, describe the behavior of $h(x)$ at $x=-1.75$. Justify your reasoning.

3.3 Day 1 Assignment: Questions Below: Part A: 1-5 odds, 7, 8, 11 Part B: 1-5

Part A:

1. Write each function as the sum/difference of terms of the form $c x^{n}$, and find the derivative. You may leave negative exponents in your answer and radicals do not have to be rationalized.
(a) $f(x)=3 x^{2}-7 x+11$
(b) $y=-4 x^{3}+6 x^{2}-3 x+2$
(c) $y=\frac{3}{4} x^{4}-\frac{5}{3} x^{3}+\frac{7}{2} x^{2}-x-6$
(d) $f(x)=\frac{x^{5}}{5}-\frac{x^{4}}{4}+\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{2}{3} x+\frac{3}{4}$
(e) $y=6 x^{2 / 3}-4 x^{1 / 2}+3 \pi$
(f) $f(x)=4-\frac{2}{x}+\frac{5}{x^{2}}-\frac{7}{x^{3}}$
(g) $f(x)=(x-8)^{2}$
(h) $y=(2 x+1)^{3}$
(i) $y=(3 x-4)(2 x+5)$
(j) $f(x)=x^{3}(2 x-1)(2 x+1)$
(k) $f(x)=\frac{2 x^{4}-3 x^{3}}{x}$
(1) $f(x)=\frac{x^{2}+4 x-8}{2 x^{4}}$
(m) $y=8 \sqrt{x}-6 \sqrt[3]{x}-4 \sqrt[4]{x}+2 \sqrt{2}$
(n) $y=\sqrt{2 x}+\sqrt[3]{3 x}+\sqrt[4]{5 x}+\sqrt[5]{7}$
(o) $y=\sqrt{\frac{x}{2}}-\sqrt[3]{\frac{x}{3}}$
(p) $f(x)=\frac{3}{x^{3}}+\frac{8}{\sqrt{x}}-\sqrt{3 x}$
2. (a) If $y=m^{4}-6 m^{2}-8$, find $\frac{d y}{d m}$.
(b) If $V=\frac{4}{3} \pi r^{3}$, find $\frac{d V}{d r}$.
(c) If $f(x)=\frac{1}{x^{4}}-\frac{2}{x^{3}}+\frac{3}{x^{2}}$, find $\frac{d}{d x} f(x)$.
(d) If $y=2 a^{-2}+3 a-4$, find y^{\prime}.
(e) Find $\frac{d}{d c}\left(2 c^{10}-5 c^{2}\right)$.
(f) If $x=4 y^{2}-6 y+11$, find $\frac{d x}{d y}$.
3. Find the slope of the tangent line to each function at the given point.
(a) $f(x)=2 x^{2}-5 x+3$ at $x=-2$
(b) $y=\frac{1}{6} x^{3}-\frac{3}{4} x^{2}+2 x-7$ at $x=4$
(c) $y=3 \sqrt{x}-2 \sqrt[3]{x}+6$ at $x=64$
(d) $f(x)=\frac{x-3}{x}$ at $x=-3$
4. Find the equation of the tangent line to the given curve at the given point. You may leave your answers in slope-intercept form.
(a) $f(x)=-x^{3}+8 x^{2}$ at $(5, f(5))$
(b) $y=\frac{3}{x}-\frac{2}{x^{2}}+7$ at $(-2, f(-2))$
(c) $y=\left(x^{2}-2 x+3\right)^{2}$ at $(-1, f(-1))$
5. Find the coordinates of the point(s), if any, at which the tangent line is horizontal.
(a) $f(x)=3 x^{2}-12 x+5$
(b) $y=x^{3}-6 x^{2}+9 x-1$
(c) $f(x)=2 x^{3}+3 x^{2}+30 x-40$
6. Find the derivatives of $f(x)=2 x-3$ and $g(x)=(2 x-3)^{2}$. How does $g^{\prime}(x)$ compare with $f(x)$?
7. Find the equations of two lines, each of slope 6 , that are tangent to the curve $f(x)=x^{3}+3 x+1$.
8. What is the smallest slope that a tangent line to the curve $y=x^{3}-6 x$ will ever have?
9. The slope of the tangent line drawn at the vertex of a parabola will always be 0 . Based on this, show that the x-coordinate of the vertex of the parabola $f(x)=a x^{2}+b x+c$ is $x=-\frac{b}{2 a}$.
10. Tangent lines are drawn to the function $f(x)=x^{2}-\frac{4}{x}$ at the points $(-1,5)$ and $(1,-3)$. Find the coordinates of the point at which the tangent lines intersect.
11. A line is drawn tangent to the curve $y=\sqrt{x}$ at the point $(4,2)$. How high above the curve is the tangent line at $x=16$?

Part B:

1. For what value(s) of x will the slope of the tangent line to the graph of $h(x)=4 \sqrt{x}$ be 2 ? Find the equation of the line tangent to $h(x)$ at this/these x-values. Show your work.
2. Find the equation of the line tangent to the graph of $g(x)=\frac{2}{\sqrt[4]{x^{3}}}$ when $x=1$.
3. The line defined by the equation $\frac{1}{2} x+3=-2(y-3)$ is the line tangent to the graph of a function $f(x)$ when $x=a$. What is the value of $f^{\prime}(a)$? Show your work and explain your reasoning.
4. The line defined by the equation $y-3=-\frac{2}{3}(x+3)$ is the line tangent to the graph of a function $f(x)$ at the point $(-3,3)$. What is the equation of the normal line when $x=-3$. Explain your reasoning.
5. Determine the value(s) of x at which the function $f(x)=x^{4}-8 x^{2}+2$ has a horizontal tangent.
6. For what value(s) of k is the line $y=4 x-9$ tangent to the graph of $f(x)=x^{2}-k x$?

$$
\begin{aligned}
& £+x 9=A \text { pur } 1-x 9=A \cdot L(x) f t=(x), 8:(\varepsilon-x Z) t=\tau 1-x 8=(x), 8 \cdot \tau=(x), f \cdot 9 \text { yurod yons ou }(3)
\end{aligned}
$$

3.3 Day 2 Assignment: QUESTIONS BELOW Part A: 1-20 EVEN, 21-24 Part B: a, b

Part A: Find the derivative of each of the following functions using the product rule in each case. Write each answer in simplified form.

1. $y=(9 x+11)(3 x-4)$
2. $f(x)=\left(x^{2}-4 x\right)(2 x+7)$
3. $f(x)=\left(x^{2}-6 x+5\right)\left(x^{2}-3 x-2\right)$
4. $y=\left(6 x^{4}\right)\left(5 x^{2}+8 x-4\right)$
5. $y=\left(-3 x^{-2}\right)\left(2 x^{5}+4 x^{3}\right)$
6. $f(x)=6 x$ (Think of $6 x$ as the product of 6 and x.)
7. $f(x)=\left(x-x^{-1}\right)\left(x+x^{-1}\right)$
8. $y=(2 x)(3 x-4)(5 x+2)$
9. $y=x^{2}(2 x+3)\left(x^{2}-x\right)$
10. $f(x)=\left(x^{2}-1\right)^{2} \quad$ (Think of $\left(x^{2}-1\right)^{2}$ as $\left(x^{2}-1\right)\left(x^{2}-1\right)$.)

Find the derivative of each of the following functions using the product rule. Do not simplify your answer.
11. $f(x)=(2 x-1)\left(x^{2}+3\right)\left(2 x^{4}\right)$
12. $f(x)=\left(2 x^{2}-6 x-1\right)\left(x^{2}+4 x+8\right)$
13. $y=\left(4 x^{1 / 2}\right)\left(2 x^{3}-x^{3}\right)\left(5 x^{-1 / 3}+2 x^{2}\right)$
14. $y=(6-\sqrt{x})(2 x+9 \sqrt[3]{x})\left(-x^{2}+\sqrt[4]{x^{3}}\right)$
15. $f(x)=\left(\frac{x}{4}-\frac{4}{x}\right)\left(\frac{x^{2}}{6}+\frac{6}{\sqrt[3]{x}}\right)$

Find the slope of the tangent line to each function at the given value of x. Use the product rule in each question.
16. $y=\left(6 x^{2}-5 x-4\right)\left(x^{3}+4 x^{2}\right) ; x=1$
17. $y=(x-3)\left(2 x^{2}-x-1\right)\left(x^{3}+3 x^{2}+2\right) ; x=0$
18. $f(x)=(x-2)(x-1)(x)(x+3) ; x=-1$

Find the equation of the tangent line to each function at the given point. Leave your answers in slopeintercept form.
19. $f(x)=-x^{2}\left(x^{2}+4 x\right)(3 x-2) ; x=-1$
20. $y=\sqrt{x}(5-3 \sqrt[3]{x})\left(\frac{1}{x}-2\right) ; x=1$

Shown at right is a graph of the functions $f(x)$ and $g(x)$. Assume that $F(x)=f(x) \cdot g(x)$. By studying the graph and using the product rule ${ }_{\text {, }}$ determine the value of each of the following,
21. $F^{*}(2)$
22. $F^{\prime \prime}(-4)$
23. $F^{\prime}(0)$
24. $F^{\prime}(3)$
25. If $f(x)=\left(x^{2}+3 x\right)^{3}$, use the product rule to show that

$$
f^{\prime}(x)=5\left(x^{2}+3 x\right)^{4}(2 x+3)
$$

Part B: Use the table to answer the following questions:
a) If $H(x)=2 f(x) \cdot g(x)$, what is the value of

$$
\lim _{x \rightarrow-2} \frac{H(x)-H(-2)}{x+2} ?
$$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	1	-1	2	4
-1	3	-2	1	1
0	-1	2	-2	-3

b) If $K(x)=(4 x-f(x))(2 g(x)-2)$, what is the slope of the normal line when $x=-2$?

$$
(\varepsilon+x z),\left(x \varepsilon+{ }_{z} x\right) \varsigma=(x),{ }_{n}[(x) \delta] \varsigma=
$$

$$
\cdots+\left[(x)^{8}\right][(x) 8][(x) 8][(x), 8][(x) 8]+[(x) 8][(x) 8][(x) 8][(x) 8][(x), 8]=(x), f \because
$$

$$
\cdot\left[(x)^{g}\right][(x) 8][(x) \delta][(x) \delta][(x) \mathcal{B}]={ }_{\delta}[(x) g]={ }_{\delta}\left(x \varepsilon+z^{x}\right)=(x) f \text { моN }
$$

$$
\begin{aligned}
& (t+x z)\left(1-x_{9}-{ }_{z} x_{z}\right)+\left(8+x t+{ }_{z} x\right)\left(9-x_{t}\right) z_{1} \\
& \left({ }_{r} x 8\right)\left(\varepsilon+{ }_{z} x\right)(1-x z)+\left({ }^{x} z\right)(x z)(1-x z)+\left({ }_{,} x z\right)\left(\varepsilon+{ }_{z^{x}}\right) z \cdot 11
\end{aligned}
$$

3.3 Day 3 Assignment: QUESTIONS BELOW Part A: 1-14 Even, 17-19 Part B: a \& b

Use the quotient rule to find the derivative of each of the following functions.
Part A:

1. $y=\frac{2 x}{x+1}$
2. $y=\frac{x^{2}}{2 x-3}$
3. $f(x)=\frac{x+4}{x-4}$
4. $f(x)=\frac{2 x-3}{2 x+3}$
5. $y=\frac{x-4}{x^{2}}$
6. $y=\frac{1}{x^{2}+2 x+3}$
7. $f(x)=\frac{4-2 x}{1-x}$
8. $f(x)=\frac{x^{2}-4}{x^{2}+1}$
9. $f(x)=\frac{2}{\sqrt{x}+1}$
10. $y=\frac{\sqrt{x}}{x+2}$
11. $y=\frac{x}{\sqrt{x}+1}$
12. $f(x)=\frac{\sqrt{x}+2}{\sqrt{x}-2}$

Find the equation of the tangent line drawn to the given curve at the given point. Give your answers in the general form $A x+B y+C=0$.
13. $y=\frac{x^{2}}{x+2},(2,1)$
14. $f(x)=\frac{\sqrt{x}}{2-x},(4,-1)$
15. $y=\frac{12}{x^{2}+2},(-1,4)$

In questions 16 and 17 , find the derivative in two different ways. First, simplify the expression and then differentiate. Second, use the quotient rule.
16. $y=\frac{15 x^{6}}{3 x^{2}} \quad$ 17. $f(x)=\frac{x^{3}-8}{x-2}$
18. Find the coordinates of two points on the graph of the function $f(x)=\frac{10 x}{x^{2}+1}$ at which the tangent line is horizontal. This curve is known as a serpentine.
12. Find the equations of two lines tangent to the curve $y=\frac{x}{x+1}$ that are parallel to the line $x=4 y=6=0$. Write your answers in slope-intercept form.

Part B:

Use the table below to complete exercises 8-10.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	1	-1	2	4
-1	3	-2	1	1
0	-1	2	-2	-3

a) If $H(x)=\frac{2 f(x)}{g(x)}$, what is the equation of the tangent line when $x=-1$?
10. If $K(x)=\frac{4 x+f(x)}{3-g(x)}$, what is the slope of the tangent line when $x=-2$?

3.3 Day 4 Assignment: Textbook P 124 \#24, 25, 30, 32-36, 39

3.4 Assignment: Textbook P 135 \# 1, 8, 9, 10a, 13, 15, 16, 19, 24, 34 \& Questions 1 \& 2 Below

1. 1998 AP Calculus AB \#3 (Modified)

The graph of the velocity $v(t)$, in feet per second, of a car traveling on a straight road, for $0 \leq t \leq 50$ is shown below. A table of values for $v(t)$, at 5 second intervals of time, is also shown to the right of the graph.
a. During what interval(s) of time is the acceleration of the car positive? Give a reason for your

t (seconds)	$v(t)$ (feet per second)
0	0
5	12
10	20
15	30
20	55
25	70
30	78
35	81
40	75
45	60
50	72

2. 2000 AP Calculus AB \#2 (Partial)

Two runners, A and B, run on a straight racetrack for $0 \leq t \leq 10$ seconds. The graph below, which consists of two line segments, shows the velocity, in meters per second, of Runner A. The velocity, in meters per second, of Runner B is given by the function v defined by $v(t)=\frac{24 t}{2 t+3}$.

a. Find the velocity of Runner A and the velocity of Runner B at $t=2$ seconds. Indicate units of measure.
b. Find the acceleration of Runner A and the acceleration of Runner B at time $t=2$ seconds. Indicate units of measure.

$$
\begin{aligned}
& z^{2 r s} \left\lvert\, m \frac{b t}{z L}=(z) \omega\right. \\
& \frac{b}{q b-891}=(\tau) 0 \\
& \frac{\tau^{(s+z \cdot z)}}{(z)(z)+\tau-(1-z)(s+z \cdot \tau)}=(\tau), 1 \\
& \text { 2xshax } \frac{5}{9}=(2) 0 \\
& \frac{\delta}{01}=(\tau), 1 \\
& \frac{\tau(\zeta+q z)}{(z)+\pi z-(1 z)(t+\gamma z)}=(+1), \wedge: 8+\cdots \cdots z \\
& \frac{\varepsilon}{01}=(x), r \\
& \not \frac{\varepsilon}{0}=(\ngtr) \wedge: \forall \text { mmang (q }
\end{aligned}
$$

3.5 Assignment: P146 \#1, 2, 4, 6, 9, 10, 21, 29, 35, 37, 46-48 Plus Questions 1-3 Below

1. Determine the values) of ϑ at which the function $f(\theta)=\sqrt{3} \theta+2 \cos \theta$ has a horizontal tangent on the interval $[0,2 \pi)$.
2. Find the equation of the line tangent to the graph of $g(x)=x^{2} \cos x$ when $x=\frac{\pi}{2}$.
3. Use the table to answer the following question: . If $J(x)=g(x) \cdot \sin x$, what is the value of $J^{\prime}(0)$?

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	1	-1	2	4
-1	3	-2	1	1
0	-1	2	-2	-3

$$
\begin{aligned}
\varepsilon- & =(0), I \\
(1)(\varepsilon-)+(0) \varepsilon- & =(0), I \\
0 \cos \cdot(0) \delta+0 u!s \cdot(0), \delta & =(0), I \\
x \cos \cdot(x) \delta+x u!s \cdot(x), \delta & =(x), \varepsilon \quad \varepsilon
\end{aligned}
$$

