Calculus 30

MIDTERM REVIEW

A. Find each limit

1.
$$\lim_{x \to 3} \frac{x - 3}{x^2 - 4x + 3}$$

$$\lim_{x \to 3} \frac{x - 3}{r^2 - 4r + 3} \qquad 2. \qquad \lim_{x \to 5} \left(x^2 + 2x - 3\right)$$

10.
$$\lim_{x \to 4} \frac{x+5}{x-4}$$

11.
$$\lim_{x \to 3} \frac{x+2}{(x-3)^2}$$

3.
$$\lim_{x \to 1} \frac{x^4 - 5x^2 + 1}{x + 2}$$

$$\lim_{x \to 1} \frac{x^4 - 5x^2 + 1}{x + 2} \qquad 4. \qquad \lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$

12.
$$\lim_{x \to 2^{-}} \frac{x^2 - 5x}{x^2 - 4}$$
 13. $\lim_{x \to \infty} \frac{1}{x}$

13.
$$\lim_{x\to\infty}\frac{1}{x}$$

5.
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 3x + 2}$$

$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 3x + 2} \qquad 6. \qquad \lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$$

14.
$$\lim_{x \to \infty} \frac{2x^2 - 3x}{3x^2 + 2}$$

$$\lim_{x \to \infty} \frac{2x^2 - 3x}{3x^2 + 2}$$
 15.
$$\lim_{x \to \infty} \frac{x^2 + 1}{2x - 3x^3}$$

7.
$$\lim_{x \to 0} \sqrt{x}$$

$$\lim_{x \to 0} \sqrt{x} \qquad \qquad 8. \qquad \lim_{x \to 0^+} \sqrt{x}$$

16.
$$\lim_{x \to \infty} \frac{4x^4 + 5}{8 - 3x^3}$$

$$\lim_{x \to \infty} \frac{4x^4 + 5}{8 - 3x^3}$$
 17.
$$\lim_{x \to -\infty} \frac{5x}{\sqrt{x^2 + 4}}$$

9.
$$f(x) = \begin{cases} -x-2 & \text{if } x \le -1 \\ x & \text{if } -1 \le x < 1 \\ x^2 - 2x & \text{if } x \ge 1 \end{cases}$$

$$f \quad x \le -1$$

$$f \quad -1 \le x < 1$$

$$f \quad x \ge 1$$

$$\lim_{x \to -1} f(x)$$

18.
$$\lim_{x \to 6} \frac{\sqrt{x-2} - 2}{x - 6}$$

$$\lim_{x \to 6} \frac{\sqrt{x-2}-2}{x-6} \qquad 19. \qquad \lim_{x \to 3} \frac{\sqrt{x^2-9}}{x-3}$$

simplify as much as possible. 1.
$$y = 8x^3$$

$$2. f(x) = 6x^{\frac{8}{3}}$$

$$3. y = 2x^4 + \sqrt{x}$$

$$4. y = 3x\sqrt{x}$$

$$5. \qquad f(x) = \sqrt{x}(2-3x)$$

6.
$$f(x) = (2x^3 + 5)(3x^2 - x)$$

7.
$$y = \frac{x^2 + 2x - 3}{x^3 + 1}$$

$$8. y = \frac{\sqrt{x}}{1+2x}$$

9.
$$y = (x^2 - x + 2)^8$$

10.
$$y = \frac{1}{\sqrt[3]{1-x^4}}$$

$$11. \qquad y = \left(\frac{2x-1}{x+2}\right)^6$$

12.
$$f(x) = (x^2 + 1)^3 (2 - 3x)^4$$

13.
$$x^2 + y^2 = 25$$

14.
$$2x^5 + x^4y + y^5 = 36$$

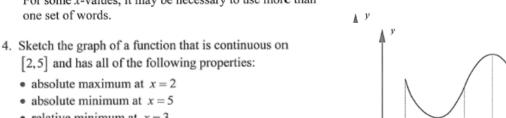
15.
$$x^2 - x^3y^2 - y^3 = 13$$

C. Slope

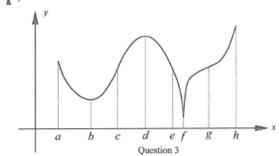
- 1. Find the slope of the tangent line to $y = 2x x^2$ at (-1, -3)
- 2. Find the slope of the tangent line at the point given
 - (a) y = (1-2x)(3x-4)
- at x = 2
- $(b) y = x^4 \left(4x^3 + 2\right)$
- at x = -1
- (c) $y^5 + x^2y^3 = 10$
- at (-3,1)
- D. Find the Equation of the Tangent Line
 - 1. $y = (x^2 3)^8$
- at (2,1)
- $2. y = x + \frac{6}{x}$
- (2,5)
- E. Point on a Curve
 - 1. At what point on the curve $y = x^4 25x + 2$ is the tangent line parallel to the line 7x y = 2
 - 2. Find the points on the curve $y = \frac{x}{x-1}$ where the tangent line is parallel to the line x+4y=1
 - 3. Find the points on the curve $y = 2 \frac{1}{x}$ where the tangent is perpendicular to the line y + 4x = 1
 - 4. Find the equation of the line through (2, 1) that is tangent to the curve $y = x^2 2$
- F. Sketch the graphs by finding the relative extrema and inflection points
 - 1. $y = x^4 8x^2$
 - 2. $y = x^3 + 4x$
 - 3. $y = 3x^{\frac{1}{3}} + 9x^{\frac{4}{3}}$
 - $4. y = \frac{4x}{x^2 4}$
 - 5. $y = \frac{x^2 5x + 4}{x^2 + 4}$

F. Curve Analysis

- 1. Consider the relation $x^2 + 4y^2 = 12$. Find $\frac{d^2y}{dr^2}$.
- 2. Refer to the graph on the interval [0,6] at right to complete the table.
 - (a) The absolute minimum value is
 - (b) The absolute maximum value is ***
 - (c) The relative maximum value(s) is/are
 - (d) The relative minimum value(s) is/are ***
- 3. Refer to the graph of the function shown below right. For each of the x-values a, b, c, d, e, f, g, and h, choose the words "absolute maximum", "absolute minimum", "relative maximum", "relative minimum", or "none of these". For some x-values, it may be necessary to use more than one set of words.



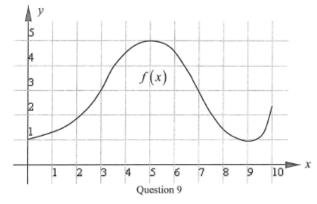
- - relative minimum at x = 3
 - relative maximum at x = 4
- 5. Sketch the graph of a function that is continuous on [2,5] and has all of the following properties:
 - absolute minimum at x = 2
 - absolute maximum at x = 5
 - relative minima at x = 3.5 and x = 4.5
 - relative maxima at x = 3 and x = 4



Question 2

2

- 6. Sketch the graph of a continuous function that has a relative maximum at x = 2 and is differentiable at x = 2.
- 7. Sketch the graph of a continuous function that has a relative maximum at x = 2 but is not differentiable at x = 2.
- 8. Sketch the graph of a function on the interval [2,5] that has an absolute maximum at x=4 but is not continuous at x = 4.
- 9. Use the graph of f at right to find:
 - (a) the open interval(s) on which f is increasing.
 - (b) the open interval(s) on which f is decreasing.
 - (c) the open interval(s) on which f is concave
 - (d) the open interval(s) on which f is concave
 - (e) the coordinates of any relative extrema.
 - (f) the coordinates of any inflection points.



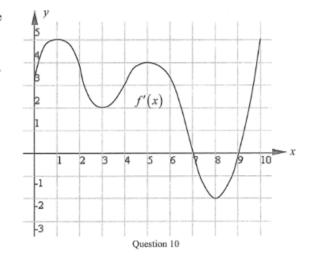
 The graph of the derivative of a function f is shown below right. Use the graph to answer the following question about f.

- (b) On what open interval(s) is f decreasing?
- (c) On what open interval(s) is f concave down?
- (d) On what open interval(s) is f concave up?
- (e) State the x-value(s) at which f has a point of inflection.
- (f) State the x-value(s) at which f has any relative extrema.
- (g) What are the critical numbers?
- 11. Determine the y-intercept of the function

$$f(x) = \frac{x^4 + 6x^3 - 15x^2 + 24x - 100}{2x^2 - 25}.$$

12. Determine the x-intercepts of the function

$$f(x) = \frac{x^4 - 9x^2}{x^3 + 1}$$
.



- 13. Determine the equation(s) of any vertical asymptote line(s) for the function $f(x) = \frac{x^2 6x + 9}{x^4 + 8x}$
- 14. Use limits to determine the equation of the horizontal asymptote line to the function $f(x) = \frac{3x^2}{(x+1)^2}$.
- 15. Use limits to determine the equation of two horizontal asymptote lines to the function

$$f(x) = \frac{\sqrt{9x^2 + 3x + 2}}{x - 2}$$
.

- 16. Determine the absolute extrema for the function $f(x) = 2x^3 3x^2 12x$ on the interval [-2, 4].
- 17. For the relation $x^2 + xy = 6$,
 - (a) use implicit differentiation to show that $\frac{dy}{dx} = \frac{-2x y}{x}$.
 - (b) find the value of $\frac{dy}{dx}$ at the point (-3,1). Based on this answer, does the point lie in an interval in which the relation is increasing or decreasing? Explain.
 - (c) use implicit differentiation to show that $\frac{d^2y}{dx^2} = \frac{2(x+y)}{x^2}$.
 - (d) find the value of $\frac{d^2y}{dx^2}$ at the point (-3,1). Based on this answer, does the point lie in an interval in which the relation is concave up or concave down? Explain.
- 18. What can you conclude about the point (3, f(3)) if:

(a)
$$f'(3) = 0$$
, $f''(3) = -4$?

(b)
$$f'(3) = 0$$
, $f''(3) = 4$?

(c)
$$f'(2.9)=1$$
, $f'(3)=0$, $f'(3.1)=-1$?

(d)
$$f''(2.9) = -4$$
, $f''(3) = 0$, $f''(3.1) = 5$?

19. For a certain function, $f''(x) = \frac{(x-1)^3}{\sqrt{x^2+4}}$. Perform a sign analysis for f''(x) and determine the open

intervals on which f(x) is concave up and concave down.

- 20. Find the equation of the oblique asymptote line to the function $f(x) = \frac{x^3 3x^2 + 5x 7}{x^2 x + 1}$.
- 21. Explain why a cubic polynomial function cannot have more than two relative extrema.
- 22. Sketch the graph of a function that has the following sign analysis for f'(x).

For each of the functions in questions 23 to 28, find:

- (a) f'(x), and perform a sign analysis.
- (b) the open intervals on which f(x) is increasing or decreasing.
- (c) the coordinates of any relative extrema.
- (d) f"(x), and perform a sign analysis.
- (e) the open intervals on which f(x) is concave up or concave down.
- (f) the coordinates of any inflection points.
- (g) the x and y intercepts.
- (h) the equations of any asymptote lines.
- (i) a sketch of the function showing all of the above features.

23.
$$f(x) = \frac{2x^2}{x^2 + 12}$$

24.
$$f(x) = 3x^5 - 10x^3$$

25.
$$f(x) = \frac{3x}{(x+1)^2}$$

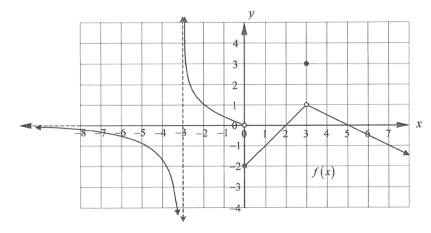
26.
$$f(x) = \frac{x^2 - 7x + 10}{x - 1}$$

27. $f(x) = 3x^{2/3} - x^2$

27.
$$f(x) = 3x^{2/3} - x^2$$

28.
$$f(x) = \frac{x+2}{\sqrt{x^2+2}}$$

G: Continuity



- 2. There are three conditions that a function must satisfy in order to be continuous at a point. In light of these conditions, explain why function f(x), above, is not continuous at:
 - (a) x = -3
- (b) x = 0
- (c) x = 3
- 3. Identify the type of discontinuity each function has at x = 1. Explain.

(a)
$$f(x) = \frac{\sin\left(\frac{\pi x^2}{2}\right)}{x^2 - 1}$$
 (b) $f(x) = \frac{x - 1}{x^2 - 1}$ (c) $f(x) = \frac{|x - 1|}{x - 1}$

- 4. Define f(3) so that $f(x) = \frac{x^2 4x + 3}{x 3}$ will be continuous at x = 3.
- 5. Find the value(s) of x, if any, at which the function $f(x) = \frac{x|x-4|}{x^3 2x^2 8x}$ is discontinuous. Explain your reasoning. Classify each discontinuity.

Calculus 30

Midterm Review Answers

A. Limits

1.
$$\frac{1}{2}$$

11.
$$\infty$$
 12. ∞ 13. 0 14. $\frac{2}{3}$ 15. 0 16. - ∞

18.
$$\frac{1}{4}$$

17. -5 18.
$$\frac{1}{4}$$
 19. does not exist

B. **Derivatives**

2.
$$16x^{\frac{5}{3}}$$

1.
$$24x^2$$
 2. $16x^{\frac{5}{3}}$ 3. $8x^3 + \frac{1}{2\sqrt{x}}$ 4. $\frac{9}{2}x^{\frac{1}{2}}$ 5. $x^{-\frac{1}{2}} - \frac{9}{2}x^{\frac{1}{2}}$

4.
$$\frac{9}{2}x^{\frac{1}{2}}$$

5.
$$x^{\frac{-1}{2}} - \frac{9}{2}x^{\frac{1}{2}}$$

6. $6x^2(3x^2-x)+(6x-1)(2x^3+5)$ or $18x^4-6x^3+(6x-1)(2x^3+5)$

7.
$$\frac{(2x+2)(x^3+1)-3x^2(x^2+2x-3)}{(x^3+1)^2}$$
 8.
$$\frac{1-2x}{2\sqrt{x}(1+2x)^2}$$
 9.
$$(16x-8)(x^2-x+2)^7$$

8.
$$\frac{1-2x}{2\sqrt{x}(1+2x)}$$

9.
$$(16x-8)(x^2-x+2)^7$$

10.
$$\frac{4}{3}x^3(1-x^4)^{-\frac{4}{3}}$$

11.
$$\frac{30(2x-1)^5}{(x+2)^7}$$

10.
$$\frac{4}{3}x^3(1-x^4)^{-\frac{4}{3}}$$
 11. $\frac{30(2x-1)^5}{(x+2)^7}$ 12. $-6(x^2+1)^2(2-3x)^3(5x^2-2x+2)$

13.
$$\frac{-x}{y}$$

13.
$$\frac{-x}{y}$$
 14. $\frac{-10x^4 - 4x^3y}{x^4 + 5y^4}$ 15. $\frac{3x^2y^2 - 2x}{2x^3y - 3y^2}$

$$15. \ \frac{3x^2y^2 - 2x}{2x^3y - 3y^2}$$

C. Slope

1. 4 2. a) -13 b) 20 c)
$$\frac{3}{16}$$

c)
$$\frac{3}{16}$$

Find Equation of Tangent Line D.

1.
$$y = 32x - 63$$

1.
$$y = 32x - 63$$
 2. $y = \frac{-1}{2}x + 6$

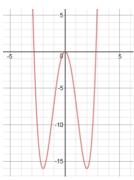
E. **Points on a Curve**

2.
$$\left(3,\frac{3}{2}\right)$$
 and $\left(-1,\frac{1}{2}\right)$

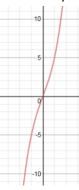
3.
$$\left(2, \frac{3}{2}\right)$$
 and $\left(-2, \frac{5}{2}\right)$

2.
$$\left(3, \frac{3}{2}\right)$$
 and $\left(-1, \frac{1}{2}\right)$ 3. $\left(2, \frac{3}{2}\right)$ and $\left(-2, \frac{5}{2}\right)$ 4. $y = 6x - 11$ and $y = 2x - 3$

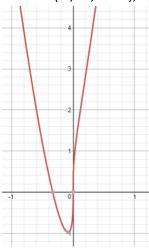
1. Max (0, 0), Min (2, 16), (-2, -16), Inflection Points (-1.155, -8.89), Intercepts: (0,0), (2.828, 0), (-2.828, 0)



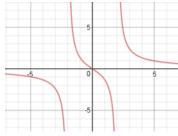
2. No Max/Min points, Inflection Point (0, 0), intercepts: (0,0)



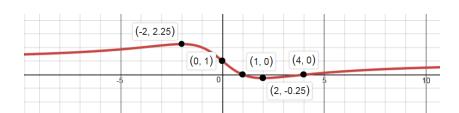
3. Min: (-1/12, -0.98), IP: (0,0), (1/6, 2.48), y-int: (0,0), x-int: (0,0), (-1/3, 0)



4. No extrema, IP: (0,0), intercepts: (0,0), VA: x = 2, x = -2, HA: y=0

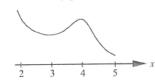


5. Max: (-2, 2.25), Min: (2, -0.25), IP: (0,1), $(2\sqrt{3}, -0.08)$, $(-2\sqrt{3}, 2.08)$ Intercepts: (1,0), (4,0), (0,1), HA: y=1

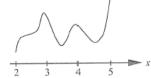


point; d—relative maximum; e—none of these; f—relative and absolute minimum; g—inflection point; h—absolute maximum

4. one of many possibilities

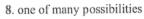


5. one of many possibilities



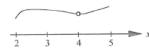
6. one of many possibilities

7. one of many possibilities



9. (a) $(0,5) \cup (9,10)$ (b) (5,9)

(c)
$$(0,3) \cup (7,10)$$
 (d) $(3,7)$



(e) (5,5) is a relative maximum and (9,1) is a relative minimum.

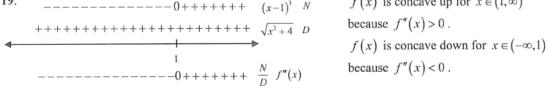
10. (a) $(0,7) \cup (9,10)$ (b) (7,9) (c) $(1,3) \cup (5,8)$ (d) $(0,1) \cup (3,5) \cup (8,10)$ (e) $x \in \{1,3,5,8\}$

(f) relative maximum at x = 7; relative minimum at x = 9 (g) $x \in \{7,9\}$ 11. 4 12. $x \in \{0,\pm 3\}$

13. x = 0, x = -2 14. y = 3 15. y = 3, y = -3 16. absolute maximum, f(4) = 32; absolute minimum,

$$f(2) = -20$$
 17. (b) $\frac{dy}{dx}\Big|_{(-3,1)} = -\frac{5}{3}$; the relation is decreasing because $\frac{dy}{dx} < 0$ (d) $\frac{d^2y}{dx^2}\Big|_{(-3,1)} = -\frac{4}{9}$; the

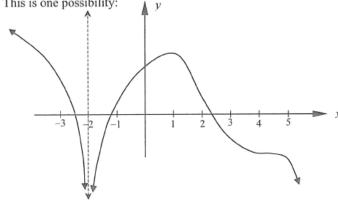
point is in a concave down interval since $\frac{d^2y}{dr^2} < 0$ 18. (a) it is a relative maximum (b) it is a relative minimum (c) it is a relative maximum (d) it is a point of inflection



f(x) is concave up for $x \in (1, \infty)$

20. y = x - 2 21. If $f(x) = ax^3 + bx^2 + cx + d$, then $f'(x) = 3ax^2 + 2bx + c$. Recall that relative extrema may occur only at critical numbers. The derivative function is quadratic and has at most two zeros. At no value of x could the derivative function be undefined. Thus there can be at most two critical numbers and hence no more than two relative extrema.

22. This is one possibility:

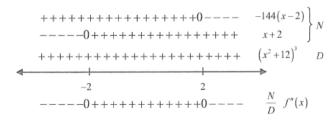


(b) f(x) increases for $x \in (0, \infty)$ because f'(x) > 0. f(x) decreases for $x \in (-\infty, 0)$ because f'(x) < 0.

(c) (0,0) is a relative minimum point because f'(x) goes -0 + .

(d)
$$f''(x) = \frac{-144(x-2)(x+2)}{(x^2+12)^3}$$

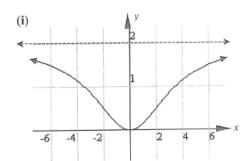
(e) f(x) is concave up for $x \in (-2,2)$ because f''(x) > 0. f(x) is concave up down $x \in (-\infty, -2) \cup (2, \infty)$ because f''(x) < 0.

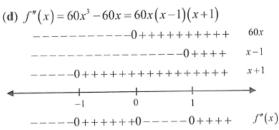


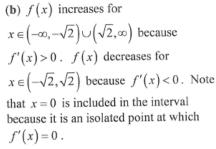
23. (f) $(\pm 2,1/2)$ are inflection points because f''(x)

changes signs at each. (g) The x-intercept is 0; the y-intercept is 0.

(h) y = 2 is a horizontal asymptote line.







(c)
$$(\sqrt{2}, -8\sqrt{2})$$
 or $(1.41, -11.31)$ is a relative minimum point because $f'(x)$ goes $-0+.(-\sqrt{2}, 8\sqrt{2})$ or $(-1.41, 11.31)$ is a relative maximum point because $f'(x)$ goes $+0-.$

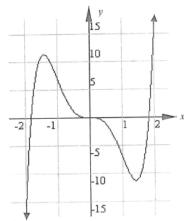
(e) f(x) is concave up for $x \in (-1,0) \cup (1,\infty)$ because f''(x) > 0. f(x) is concave down for $x \in (-\infty,-1) \cup (0,1)$ because f''(x) < 0. (f) (-1,7), (0,0), and (1,-7) are inflection points because

(f) (-1,7), (0,0), and (1,-7) are inflection points because f''(x) switches signs at each.

(g) The x-intercepts are x = 0 and $x = \frac{\pm\sqrt{30}}{3}$; the y-intercept is 0.

(h) There are no asymptotes.

(e) f(x) is concave down for $x \in (-\infty, -1) \cup (-1, 2)$ because f''(x) < 0. f(x) is concave up for $x \in (2, \infty)$ because f''(x) > 0. (f) (2, 2/3) is an inflection point because f''(x) changes signs at x = 2.

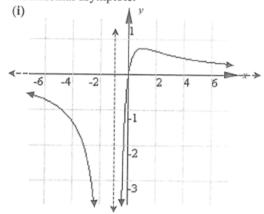


(i)

(b) f(x) decreases for $x \in (-\infty, -1) \cup (1, \infty)$ because f'(x) < 0. f(x) increases for $x \in (-1, 1)$ because f'(x) > 0.

(c) (1,3/4) is a relative maximum because f'(x) goes + 0 -.

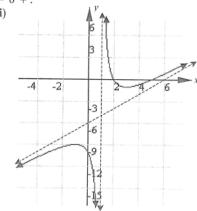
(g) The x-intercept is 0; the y-intercept is 0. (h) x = -1 is a vertical asymptote; y = 0 is a horizontal asymptote.



(e) f(x) is concave down for $x \in (-\infty,1)$ because f''(x) < 0. f(x) is concave up for $x \in (1,\infty)$ because f''(x) > 0. (f) There are no inflection points. (g) The x-intercepts are x = 2 and x = 5; the y-intercept is -10. (h) x = 1 is a vertical asymptote; y = x - 6 is an oblique asymptote.

(b) f(x) increases for $x \in (-\infty, -1) \cup (3, \infty)$ because f'(x) > 0. f(x) decreases for $x \in (-1, 1) \cup (1, 3)$ because f'(x) < 0.

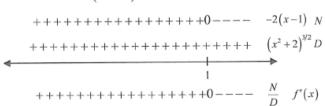
(c) (-1,-9) is a relative maximum point because f'(x) goes +0-. (3,-1) is a relative minimum point because f'(x) goes -0+.



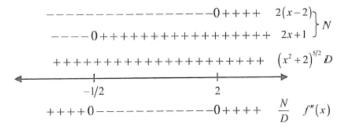
(b) f(x) increases for $x \in (-\infty, -1) \cup (0, 1)$ because f'(x) > 0. f(x) decreases for $x \in (-1,0) \cup (1,\infty)$ because f'(x) < 0. (c) (-1,2) and (1,2) are relative maxima because f'(x) goes +0 at each. (0,0) is a relative minimum because f'(x) goes -DNE + .

(e) f(x) is concave down for $x \in (-\infty, 0) \cup (0, \infty)$ because f''(x) < 0. (f) There are no inflection points. (g) The *x*-intercepts are 0 and $\pm \sqrt[4]{27} \approx \pm 2.28$; the *y*-intercept is 0 (h) There are no asymptotes.

28. (a)
$$f'(x) = \frac{-2(x-1)}{(x^2+2)^{3/2}}$$

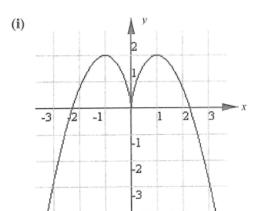


(d)
$$f''(x) = \frac{2(x-2)(2x+1)}{(x^2+2)^{5/2}}$$



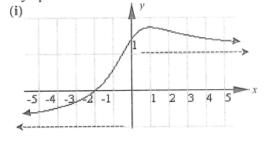
(e) f(x) is concave up for $x \in (-\infty, -1/2) \cup (2, \infty)$ because f''(x) > 0. f(x) is concave down for $x \in (-1/2, 2)$ because f''(x) < 0.

(f) (-1/2,1) and $(2,2\sqrt{6}/3) \approx (2,1.63)$ are inflection points since f''(x) changes signs at x = -1/2 and x = 2.



- (b) f(x) increases for $x \in (-\infty, 1)$ because f'(x) > 0. f(x) decreases for $x \in (1, \infty)$ because f'(x) < 0.
- (c) $(1,\sqrt{3})$ is a relative maximum point because f'(x) goes +0 -.
- (g) The x-intercept is x = -2; the y-intercept is $\sqrt{2} \approx 1.41$.

(h) y = 1 is a horizontal asymptote for x > 0; y = -1 is a horizontal asymptote for x < 0. There are no vertical asymptotes.



G: Continuity

(k) 1 (l) 0 (m) 0 (n) ∞ 2. (a) The first condition is not satisfied, namely f(-3) does not exist—it is undefined. (b) The second condition is not satisfied, namely $\lim_{x\to 0} f(x)$ does not exist. (c) The third condition is not satisfied, namely $\lim_{x\to 3} f(x) \neq f(3)$. 3. (a) f(1) yields $\frac{1}{0}$. A nonzero numerator and a zero denominator is indicative of a vertical asymptote line. Thus there is an infinite discontinuity. (b) f(1) yields $\frac{0}{0}$, which is indeterminate, but $\lim_{x\to 1} \frac{x-1}{x^2-1} = 1/2$. Thus there is a removable discontinuity. By defining f(1) = 1/2, the discontinuity can be removed. (c) $\lim_{x \to 1^+} f(x) = 1$ while $\lim_{x \to 1^-} f(x) = -1$. Thus there is a jump discontinuity. 4. Define f(3) as 2. 5. There is a removable discontinuity at x = 0since f(0) yields $\frac{0}{0}$, but $\lim_{x\to 0} f(x) = -\frac{1}{2}$. There is an infinite discontinuity at x = -2 since f(-2)yields $-\frac{12}{0}$. There is a jump discontinuity at x = 4 since $\lim_{x \to 4^+} f(x) = \frac{1}{6}$ but $\lim_{x \to 4^-} f(x) = -\frac{1}{6}$. 6. (a) $\frac{4}{5}$