Pre-Calculus 30 - Final Exam Review - Chapters 1-9

Chapter 1 - Outcome 30-7 Review

Level 2

1. Consider the graph of $y=f(x)$.
a) Sketch each of the transformed function:

iii) $y=f\left(\frac{1}{2} x\right)-2$

2. For each equation, describe how the graph was translated, reflected or stretched.
a) $y=-2 f(3(x-4))$
b) $y=f(x-5)-3$
c_ $y=f(-2 x)+5$
3. Consider the graph of $y=f(x)$ and $y=g(x)$.

Determine the equation of the translated function in the form $y=a f(b(x-h))+k$.

5. Determine algebraically the equation of the inverse of each function.
a) $f(x)=3 x-6$
b) $f(x)=x^{2}-7$
c) $y=(x-5)^{2}-9$

Level 3

6. Describe the transformation that must be applied to the graph of $f(x)$ to obtain the graph of $g(x)$. Then, determine an equation for $g(x)$.

7. Write the equation for each transformation of $y=x^{2}$ in the form $y=a f(b(x-h))+k$.
a) a vertical stretch by a factor of 3 , reflected in the y-axis, and translated 3 units left and 2 units down
b) a horizontal stretch by a factor of 2 , reflected in the x-axis, and translated 7 units up
8. The graph of the function $y=g(x)$ represents a transformation of the graph of $y=f(x)$. Determine the equation of $g(x)$ in the form $y=a f(b(x-h))+k$.

9. The key point $(-18,12)$ is on the graph of $y=f(x)$. What is its image point under each transformation of the graph of $f(x)$?
a) $-3 f(x+5)+4$
b) $y=2 f(6 x)$
10. Consider the graph of the function $y=f(x)$.

Sketch $y=f(x)$ to $y=3 f(-2(x-1))+4$.

Level 4

12. Sketch the graph of its inverse, $x=f(y)$. Determine whether the inverse is a function. If the inverse is not a function, restrict the domain of the original graph to make it a function.
a)

c)

Chapter 2 - Outcome 30-11A

1. Identify $\mathrm{a}, \mathrm{b}, \mathrm{h}$ and k for each of the following
a) $y=5 \sqrt{x+7}-2$
b) $\quad y=-4 \sqrt{-x}+8$
2. Graph $y=\sqrt{x}$

Level 3

3. Write the equation of a radical function that would result by applying each set of transformations to the graph of
a) vertical stretch by a factor of 3 , and horizontal stretch by a factor of 2
b) horizontal reflection in the y-axis, translation up 3 units, and translation left 2 units
4. Graph the functions below. Then, identify the domain and range.
a) $y=-2 \sqrt{x-2}$

b) $y=\sqrt{2 x}-4$

c) $y=2 \sqrt{-(x-3)}+1$

5. Graph $\sqrt{f(x)}$ from the following graphs of $f(x)$ and state the domain and range

6. For each function, write an equation of a radical function of the form $y=a \sqrt{b(x-h)}+k$.
a)

b)

Chapter 3 - Outcome 30-10A Review

1. Divide the following using long division or synthetic division.
a) $\left(2 w^{4}+3 w^{3}-5 w^{2}+2 w-27\right) \div(w+3)$
b) $\frac{2 x^{3}-10 x^{2}-15 x-20}{x+5}$
2. Determine the remainder when $x^{3}+x^{2}-16 x-16$ is divided by
a. $x+2$
b) $x-4$
b) Are any of the binomials above a factor of $x^{3}+x^{2}-16 x-16$?

3. Factor completely

a. $x^{3}+2 x^{2}-13 x+10$
b. $x^{4}-26 x^{2}+25$
4. Determine the value(s) of k so that the binomial is a factor of the polynomial: $x^{2}-8 x-$ $20, x+k$
5. The following polynomial has a factor of $x-3$. What is the value of k ? $k x^{3}-10 x^{2}+2 x+$ 3

Chapter 3 - Outcome 30-10B Review

1. Determine which of the following are polynomials. For each polynomial function, state the degree.
a) $h(x)=5-\frac{1}{x}$
b) $y=4 x^{2}-3 x+8$
c) $g(x)=-9 x^{6}$
d) $f(x)=\sqrt[3]{x}$
2. What is the leading coefficient, degree and constant term of each polynomial function?
a) $f(x)=-x^{3}+6 x-8$
b) $y=5+2 x^{2}$
c) $g(x)=7 x^{3}+3 x^{5}-8 x+10$
d) $\quad k(x)=9 \mathrm{x}-2 x^{2}$
3. Identify the following characteristics for each polynomial function:

- the type of function and whether it is of even or odd degree
- the end behaviour of the graph of the function
- the number of possible x-intercepts
- the y-intercept
a) $g(x)=-2 x^{4}+6 x^{2}-7 x-5$
b) $f(x)=2 x^{5}+1 x^{3}-12$

4. Fill in the table below for the following graphs

	Odd or Even	Sign of Leading Coefficient	Number of x-intercepts	Intervals where the function is positive	Intervals where the function is negative

4. Graph the following polynomial functions. The first three have already been factored for you.

$$
y=-2(x-1)^{2}(x+2)(x-4)^{2}
$$

$$
y=-2 x(x+5)^{3}
$$

$$
\mathrm{y}=(x+1)^{3}(x-2)
$$

$$
f(x)=-x^{4}+19 x^{2}+6 x-72
$$

$$
\mathrm{y}=x(x+4)^{3}(x-3)^{2}
$$

$y=x^{3}+4 x^{2}-x-4$

Chapter 4-Outcome 30.1

Level 2

1. Draw each angle in standard position. In what quadrant does each angle lie?
a) 215°
b) -70°
c) $\frac{\pi}{6}$
d) π

2. Change the degree measures to radians. Give answers as both exact and approximate measures to the nearest hundredth of a unit.
a) 150°
b) -240°
c) 310°
3. Change the radian measures to degrees. Round to two decimal places if necessary.
a) $\frac{4 \pi}{5}$
b) $\frac{5 \pi}{6}$
c) $-\frac{7 \pi}{4}$
4. Determine the one positive and one negative angle that are coterminal with the given angle.
a) 450°
b) $\frac{\pi}{5}$

Level 3

5. Write an expression for all the angles that are coterminal with each given angle.
a) 75°
b) $\frac{\pi}{3}$
c) 1

Chapter 4-Outcome 30.2 Review

1. Which point(s) lies on the unit circle? Explain how you know.
$\left(-\frac{5}{13}, \frac{12}{13}\right)$
$\left(\frac{5}{6}, \frac{1}{2}\right)$
$\left(-\frac{2}{3},-\frac{\sqrt{5}}{3}\right)$
2. Each of the following points lies on the unit circle. Find the missing coordinate satisfying the given conditions.
a) $\left(-\frac{2}{3}, y\right)$ in quadrant III
b) $\left(x, \frac{4}{5}\right)$ in quadrant II
3. The point (x, y) is located where the unit circle. Determine the coordinates of point for the given angle.
a) $\theta=45^{\circ}$
b) 2π
c) $\theta=-60^{\circ}$
d) $\frac{11 \pi}{6}$
4. Identify a measure for θ in the interval $0 \leq \theta<2 \pi$ for is the given point.
a) $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
b) $(-1,0)$
c) $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
d) $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
5. Determine the measure of all angles that satisfy the given conditions. Use exact values when possible
a) $\tan \theta=-1$, domain $0^{\circ} \leq \theta<360^{\circ}$
b) $\sin \theta=\frac{\sqrt{3}}{2}$, domain $0 \leq \theta<2 \pi$
c) $\cos \theta=-\frac{1}{2}$, domain $0 \leq \theta<2 \pi$
d) $\cot \theta=-4.87$, domain $0 \leq \theta<2 \pi$
e) $\sec \theta=4.87$, domain $0^{\circ} \leq \theta<360^{\circ}$
f) $\csc \theta=2$, domain $0^{\circ} \leq \theta<360^{\circ}$

Level 3

8. Determine the value of the following. Use exact values when possible
a) $\csc 60^{\circ}$
b) $\cos 240^{\circ}$
c) $\tan 260^{\circ}$
d) $\cot 137^{\circ}$
e) $\sin \frac{7 \pi}{6}$
f) $\sec 4.5$
9. Determine the exact value of each of the following:
a) $\tan \theta+\sqrt{3}=0,0 \leq \theta \leq 360^{\circ}$.
b) $2 \sin \theta+1=2,0 \leq \theta \leq 360^{\circ}$.
c) $2 \cos ^{2} x-5 \cos x+2=0,0 \leq x \leq 2 \pi$.
d) $4 \sin ^{2} x-3=0,0 \leq x \leq 2 \pi$.
e) $\sec \theta=-2,0 \leq \theta \leq 360^{\circ}$.
10. The point $\left(\frac{1}{3}, \frac{2 \sqrt{2}}{3}\right)$ is on the unit circle. Determine the exact value for each of the 6 trigonometric ratios.

Chapter 5-Outcome 30.3

Level 2

1. Sketch the following:
a) $y=\sin x, \quad 0 \leq x \leq 2 \pi$

Amplitude:
Period:
x-intercepts:
asymptotes:
b) $y=\cos x, \quad 0 \leq x \leq 2 \pi$

Amplitude:
Period:
x-intercepts:
asymptotes:
c) $y=\tan x, \quad 0 \leq x \leq 2 \pi$

Amplitude:
Period:
x-intercepts:
asymptotes:

Level 3
2. Determine the following for each graph
a) Amplitude:

Domain:

Range:

Period:
Write the equation of the graph in
 form $y=a \cos b(x-c)+d$
b) Amplitude:

Domain:
Range:
Period:

Write the equation of the graph in form $y=a \sin b(x-c)+d$

c) Amplitude:

Doman:
Range:
Period:

Write the equation of the graph in form $y=a \cos b(x-c)+d$

3. Graph each of the following for at least one cycle. For each state the domain, range, amplitude, and period
a) $y=5 \sin \frac{1}{2}(x+\pi)-2$

b) $y=-2 \sin 2\left(\theta-\frac{\pi}{2}\right)+4$

c) $y=3 \cos 4(x-\pi)-1$

																													-
-																													

d) $y=-\sin \frac{1}{3}\left(\theta+\frac{\pi}{4}\right)+3$

e) $y=3 \cos \left(2 \theta-\frac{\pi}{3}\right)-4$

	-	I				,					T	,				I		,				-						
																					-							

Chapter 6-Outcome 30.5

Level 2:

1) Verify that the equation $(\sec x+\tan x) \cos x-1=\sin x$ is true for $x=30^{\circ}$
2) Prove the following identities:
a) $\frac{\cos x \csc x}{\sec x \cot x}=\cos x$
b) $\cot x \sin x=\cos x$
c) $\csc x \tan x \sec x \cos x=\sec x$
3) Determine the exact value of each trigonometric expression
a) $\sin 105^{\circ}$
b) $\cos \frac{\pi}{9} \cos \frac{2 \pi}{9}-\sin \frac{\pi}{9} \sin \frac{2 \pi}{9}$

Level 3:
4) Prove the following identities.
a) $\sin \theta(\cot \theta+1)=\sin \theta+\cos \theta$
b) $\frac{\sin x+\sin ^{2} x}{\cos x+\sin x \cos x}=\tan x$
c) $\sin 2 x=\tan x+\tan x \cos 2 x$
d) $\frac{\tan \theta}{\cos \theta+\cos \theta \tan ^{2} \theta}=\sin x$

$$
\text { e) } \frac{1}{1-\cos x}-\frac{1}{1+\cos x}=2 \cot x \csc x
$$

Level 4:
5) Prove:

$$
\frac{1-\cos 2 \theta}{\sin 2 \theta}=\tan \theta
$$

6) State the non-permissible values for questions $4 a, 4 d$ and 5 .

Chapter 7 - Outcome30.9c

Level 2

1. Solve
a) $2^{x}=64$
b) $3^{x}=27^{x-2}$
c) $8^{2 x}=16^{x+3}$
d) $9^{2 x-5}=27^{x+6}$
2. Graph each of the following, and then determine the:

Domain:
Range:
Horizontal asymptote
Y intercept:
Increasing or Decreasing:

Domain:
Range:
Horizontal asymptote
Y intercept:
Increasing or Decreasing:
2. . Identify all of the transformations of the following: (ie vertical translation up 2)
a) $f(x)=3^{-x}+5$
b) $h(x)=-2\left(\frac{1}{3}\right)^{x+1}$

Level 3
4. Sketch the graph of
$y=-3^{x-2}$

$y=3\left(2^{-x}\right)-5$

$$
y=2^{2 x+4}-1
$$

Chapter 8 - Part 1

Level 2

1. Express as a logarithmic statement.

$$
2^{3}=8
$$

2. Express as an exponential statement.

$$
\log _{3} 81=4
$$

3. Determine the value of each logarithm.
a) $\log _{5} 25$
b) $\log _{2} \frac{1}{8}$
c) $\log _{9} 1$
d) $\log _{6} 6$
4. Graph each of the following and determine

5. Identify all of the transformations of the following: (state all stretches/reflections/translations up, down left or right)
a) $y=-2 \log _{3}(x-5)+2$
$y=2 \log _{3}(-x)+1$

Level 3
6. Sketch
$y=-\log _{2}(x+1)-2$

$$
y=2 \log _{3}(x-2)+1
$$

Chapter 8 Part 2

Level 2

1. Use your laws of logarithms to expand each of the following:
a) $\log _{4} \frac{x}{3}$
b) $\log _{4} x^{5}$
c) $\log _{2} y x^{5}$
2. Use the laws of logarithms to simplify each of the following:
a) $\log 2+\log 7$
b) $4 \log _{3} 5$
c) $\log _{2} 42-\log _{2} 6$
3. Determine the value of x.
a) $\log _{2} x=3$
b) $3 \log _{5} x=\log _{5} 125$
c) $6^{x}=216$
d) $4^{x+1}=64$

Level 3
4. Use the laws of logarithms to simplify and then evaluate each of the following:
a) $\log _{3} 270-\left(\log _{3} 2+\log _{3} 5\right)$
b) $3 \log _{2} 6-3 \log _{2} 3$
5. Write each expression in terms of individual logarithms.
a) $\log _{2} \frac{x^{5} \sqrt[3]{y}}{7 z}$
b) $\log _{5} \sqrt{x y^{3}}$
6. Write each expression as a single logarithm.
a) $3 \log w+\log \sqrt{w}-2 \log w$
b) $\log _{2}(x+6)+\log _{2}(x-1)$
7. Solve for x .
a) $\log _{5} x+6=8$
b) $\log _{4} x+2 \log _{4} x=6$
c) $\log _{2} x^{2}-\log _{2} 5=\log _{2} 20$
d) $\log _{3}(x+7)-\log _{3}(x-3)=2$
e) $3^{x}=100$
f) $7^{x-3}=517$

Level 4
8. Solve the following. State any restrictions

$$
\log _{6}(x+3)-2=-\log _{6}(x-2)
$$

9. Use what you have learned about logarithms to show how you could use two different transformations to graph the logarithmic function $y=\log _{2} 8 x$
10. Simplify the following logarithm. State the restrictions $\log \left(x^{2}-x-12\right)-\log \left(x^{2}-9\right)$

Chapter 9 Review

Level 2

1. Determine the characteristics of the following functions:
a) $y=\frac{2 x-1}{x-4}$

Equation of Vertical Asymptotes:
Points of Discontinuity (holes):
Equation of Horizontal Asymptote:
b) $y=\frac{x+5}{(x+5)(x-3)}$

Equation of Vertical Asymptotes:
Points of Discontinuity (holes):
Equation of Horizontal Asymptote:
c) $y=\frac{x^{2}-4}{x^{2}+3 x+2}$

Equation of Vertical Asymptotes:
Points of Discontinuity (holes):
Equation of Horizontal Asymptote:

Level 3/Level 4 (Level 4 Questions will have an oblique asymptote. You will need to determine that on your own.)
2. Graph the following functions. Be sure to give the equations of all asymptotes.
a) $y=\frac{-2 x+4}{x+5}$
b) $y=\frac{x^{2}-16}{x+4}$

c) $y=\frac{x-5}{x^{2}-2 x-15}$

d) $y=\frac{x^{2}-3 x-18}{x^{2}+7 x+12}$

$$
y=\frac{x^{2}-x-6}{x-1}
$$

$$
y=\frac{2 x+6}{x^{2}-9}
$$

