7.2 Antiderivatives with Trigonometric Substitutions

GAN FIND INTEGRALS BY USING TRIGONOMETRIC SUBSTITUTION

VIDEO LINKS:
a) http://bit.ly/2wnw3Az

Recall the following trigonometric derivatives:

If $\mathrm{f}_{\mathrm{x})}=\sin u \quad$ then $\quad \frac{d y}{d x}=\cos u \frac{d u}{d x} \quad$ If $\mathrm{f}_{(\mathrm{x})}=\cos u$ then $\quad \frac{d y}{d x}=-\sin u \frac{d u}{d x}$
If $\mathrm{f}(\mathrm{x})=\tan u$ then $\frac{d y}{d x}=\sec ^{2} u \frac{d u}{d x} \quad$ If $\mathrm{f}(\mathrm{x})=\cot u$ then $\quad \frac{d y}{d x}=-\csc ^{2} u \frac{d u}{d x}$
If $\mathrm{f}(\mathrm{x})=\sec u$ then $\frac{d y}{d x}=\sec u \tan u \frac{d u}{d x} \quad$ If $\mathrm{f}(\mathrm{x})=\csc u \quad$ then $\quad \frac{d y}{d x}=-\csc u \cot u \frac{d u}{d x}$

Recall the following trigonometric Identities:

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{1}{\tan \theta}
$$

$$
\sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta}
$$

Double-Angle Identities

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta
\end{aligned}
$$

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

Pythagorean Identities

$$
\begin{array}{l|l}
\sin ^{2} \theta+\cos ^{2} \theta=1 & \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
\tan ^{2} \theta+1=\sec ^{2} \theta & \cos ^{2} x=\frac{1+\cos 2 x}{2} \\
\cot ^{2} \theta+1=\csc ^{2} \theta &
\end{array}
$$

Addition and Subtraction Identities

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

Negative Angle Identities

$$
\begin{array}{ll}
\sin (-\theta)=-\sin \theta & \csc (-\theta)=-\csc \theta \\
\cos (-\theta)=\cos \theta & \sec (-\theta)=\sec \theta \\
\tan (-\theta)=-\tan \theta & \cot (-\theta)=-\cot \theta
\end{array}
$$

Supplement Angle Identities

$$
\begin{aligned}
& \sin (\pi-\theta)=\sin \theta \\
& \cos (\pi-\theta)=-\cos \theta \\
& \tan (\pi-\theta)=-\tan \theta
\end{aligned}
$$

$$
\begin{aligned}
& \sin (\pi+\theta)=-\sin \theta \\
& \cos (\pi+\theta)=-\cos \theta \\
& \tan (\pi+\theta)=\tan \theta
\end{aligned}
$$

$\csc (\pi-\theta)=\csc \theta$ $\sec (\pi-\theta)=-\sec \theta$ $\cot (\pi-\theta)=-\cot \theta$

$$
\csc (\pi+\theta)=-\csc \theta
$$

$$
\sec (\pi+\theta)=-\sec \theta
$$

$$
\cot (\pi+\theta)=\cot \theta
$$

Note: We did not learn the following identities but it is possible you may see them in University

Half-Angle Identities

$$
\begin{aligned}
& \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}} \\
& \cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}} \\
& \tan \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}
\end{aligned}
$$

EX \#2: Evaluate $\int \cot 7 x d x$

EX \#3: Find the indefinite integrals. In each case you can use a trigonometric identity to set up a substitution.
a) $\int \frac{d x}{\cos ^{2} 2 x}$
b) $\int \cot ^{2} 3 x d x$
c) $\int \cos ^{3} x d x$

EX \#4: Evaluate $\int_{0}^{\frac{\pi}{3}} \tan x \sec ^{2} x d x$

7.3 Integration by Parts

I GAN FIND INTEGRALS BY PARTS

VIDEO LINKS:
a) http://bit.ly/2YPVGpU

Integration by Parts

In this section you will study an important integration technique called integration by parts. This technique can be applied to a wide variety of functions and is particularly useful for integrands involving products of algebraic and transcendental functions. For instance, integration by parts works well with integrals such as

$$
\int x \ln x d x, \quad \int x^{2} e^{x} d x, \text { and } \int e^{x} \sin x d x
$$

Integration by parts is based on the formula for the derivative of a product

$$
\begin{aligned}
\frac{d}{d x}[u v] & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
& =u v^{\prime}+v u^{\prime}
\end{aligned}
$$

where both u and v are differentiable functions of x. If u^{\prime} and v^{\prime} are continuous, you can integrate both sides of this equation to obtain

THEOREM 8.1 INTEGRATION BY PARTS

If u and v are functions of x and have continuous derivatives, then

$$
\int u d v=u v-\int v d u
$$

This formula expresses the original integral in terms of another integral. Depending on the choices of u and $d v$, it may be easier to evaluate the second integral than the original one. Because the choices of u and $d v$ are critical in the integration by parts process, the following guidelines are provided.

GUIDELINES FOR INTEGRATION BY PARTS

1. Try letting $d \nu$ be the most complicated portion of the integrand that fits a basic integration rule. Then u will be the remaining factor(s) of the integrand.
2. Try letting u be the portion of the integrand whose derivative is a function simpler than u. Then $d v$ will be the remaining factor(s) of the integrand.

Note that $d v$ always includes the $d x$ of the original integrand.

Choosing our function u

A mnemonic device which is helpful for selecting u when using integration by parts is the LIATE principle of precedence for u :

Logarithmic
\underline{I} nverse Trigonometric
Algebraic
Trigonometric
Exponential
If the integrand has several factors, we try to choose let u be the highest function on the LIATE list.

EX \#1: Find $\int x e^{x} d x$

EX \#2: Find $\int x^{2} \ln x d x$.

EX \#3: Evaluate $\int_{0}^{1} \arcsin x d x$

EX \#5: Find $\int \sec ^{3} x d x$.
(there's an extra trick here! Plus you need to know that $\int \sec x d x=\ln |\sec x+\tan x|$)

Some integrals require repeated use of the integration by parts formula.
EX \#4: Find $\int x^{2} \sin x d x$.

EX \#5: Use the tabular method to find the following integral (the tic tac toe method from Stand and Deliver!)
$\int x^{3} e^{x} d x$

- To use this method, choose u as the variable who, if repeated derivatives were applied, would end up with a derivative of zero.
U = \qquad $d v=$ \qquad
- Fill in the following table starting with the middle column. At the top of the column, write u. Under it, write the derivative. Under that, write the second derivative. Continue until you get to a derivative of zero.
- Next, fill in the first column. Place a plus sign at the top, followed by a minus sign, followed by a plus sign etc
- In the last column, write $d v$ at the top. Under it, write its integral. Under that, write the next integral. Continue until you are at the row with the derivative of zero.
- Connect row one of columns one and two to row two of column three
- Connect row two of columns one and two to row three of column three
- Continue until everything is connected except the top right spot and bottom left spot
- The answer for the integral will be connection $1+$ connection $2+$ connection $3+\ldots+$ connection " n " +C

Alternate	u and Its	v^{\prime} and Its
Signs	$\underline{\text { Derivatives }}$	Antiderivatives

EX \#6:
Find $\int x^{2} \sin 4 x d x$.
Solution Begin as usual by letting $u=x^{2}$ and $d v=v^{\prime} d x=\sin 4 x d x$. Next, create a table consisting of three columns, as shown.

Alternate	u and Its	v^{\prime} and Its
Signs	Derivatives	

SUMMARY OF COMMON INTEGRALS USING INTEGRATION BY PARTS

1. For integrals of the form

$$
\int x^{n} e^{a x} d x, \quad \int x^{n} \sin a x d x, \quad \text { or } \quad \int x^{n} \cos a x d x
$$

let $u=x^{n}$ and let $d v=e^{a x} d x, \sin a x d x$, or $\cos a x d x$.
2. For integrals of the form

$$
\int x^{n} \ln x d x, \quad \int x^{n} \arcsin a x d x, \quad \text { or } \quad \int x^{n} \arctan a x d x
$$

let $u=\ln x, \arcsin a x$, or $\arctan a x$ and let $d v=x^{n} d x$.
3. For integrals of the form

$$
\int e^{a x} \sin b x d x \quad \text { or } \quad \int e^{a x} \cos b x d x
$$

let $u=\sin b x$ or $\cos b x$ and let $d v=e^{a x} d x$.

7.5 Integration with Partial Fractions

I GAN FIND INTEGRALS BY USING THE METHOD OF PARTIAL FRACTIONS
VIDEO LINKS:
a) Part 1: $\underline{\text { http://bit.ly/2MmfTCa }}$

In pre-calculus you learned how to combine functions such as

$$
\frac{1}{x-2}+\frac{-1}{x+3}=\frac{5}{(x-2)(x+3)}
$$

The method of partial fractions requires you to reverse this process

$$
\frac{5}{(x-2)(x+3)}=\frac{?}{x-2}+\frac{?}{x+3}
$$

Partial Fraction Decomposition with Distinct Linear Denominators

If $f(x)=\frac{P(x)}{Q(x)}$, where P and Q are polynomials with the degree of P less than the degree of Q, and if $Q(x)$ can be written as a product of distinct linear factors, then $f(x)$ can be written as a sum of rational functions with distinct linear denominators.

EX \#1: Write the partial fraction decomposition for $\frac{1}{x^{2}-5 x+6}$

EX \#2: Write the function $f(x)=\frac{x-13}{2 x^{2}-7 x+3}$ as a sum of rational functions with linear denominators.

EX \#3: Integrate $\int \frac{x-13}{2 x^{2}-7 x+3} d x$ using partial fractions

EX \#4: Find $\int \frac{5 x^{2}+20 x+6}{x^{3}+2 x^{2}+x} d x$. using partial fractions

EX \#5: Find $\int \frac{3 x^{4}+1}{x^{2}-1} d x$.

EX \#6: Find the general solution to $\frac{d y}{d x}=\frac{6 x^{2}-8 x-4}{\left(x^{2}-4\right)(x-1)}$

