Basic Skills to Review for Math 10 Foundations and Pre-Calculus Final Exam

 (Solutions)
From Chapter 2

1) Solve for x. (Pythagorean Theorem)

$$
x=15.6 \quad x=9.8
$$

2) Solve for x. (Using Sin, Cos, Tan Ratios)
$x=20 \operatorname{Sin} 35$
$x=11.5$

$$
\begin{aligned}
& x=10 \cos 55 \\
& x=5.7
\end{aligned}
$$

$x=12 \div \operatorname{Tan} 40$
$x=14.3$

$$
\begin{aligned}
& \angle \mathrm{A}=37^{\circ} \\
& \angle \mathrm{B}=53^{\circ}
\end{aligned}
$$

From Chapter 3

1) Multiply.
a) $(x+4)(x+6)=x^{2}+10 x+24$
b) $(2 x-3)(x+5)=2 x^{2}+7 x-15$
c) $(x+4)\left(x^{2}+2 x-3\right)=x^{3}+2 x^{2}-3 x+4 x^{2}+8 x-12=x^{3}+6 x^{2}+5 x-12$
2) Factor.
a) $3 x-6=3(x-2)$
b) $-5 x+10=-5(x-2)$
c) $x^{2}-100=(x+10)(x-10)$
d) $4 x^{2}-49=(2 x+7)(2 x-7)$
e) $x^{2}+8 x+12=(x+6)(x+2)$
f) $y^{2}-3 y-18=(y-6)(y+3)$

Now find the GCF of the 2 rows and 2 columns

$6 x^{2}$	$\mathbf{1 5 x}$
$\mathbf{- 2 x}$	-5

\#2g) Work

$6 x^{2}$	
	-5

Find 2 numbers that multiply to get -30 and add to get $\mathbf{+ 1 3}$.
g) $6 x^{2}+13 x-5=(2 x+5)(3 x-1)$
h) $3 x^{2}-27=3\left(x^{2}-9\right)=3(x+3)(x-3)$

	2x	+5
3 x	$6 x^{2}$	15
-1	$-2 x$	-5

From Chapter 4

1) Simplify the following radicals.

$$
\begin{array}{lll}
\sqrt{50}=5 \sqrt{2} & \sqrt{200}=10 \sqrt{2} & \sqrt{64}=8 \\
\sqrt[3]{80}=2 \sqrt[3]{10} & \sqrt[3]{128}=4 \sqrt[3]{2} & \sqrt[4]{80}=2 \sqrt[4]{5}
\end{array}
$$

2) Rewrite as an entire radical.

$$
2 \sqrt{5}=\sqrt{20}
$$

$$
4 \sqrt[3]{3}=\sqrt[3]{192}
$$

3) Evaluate (without using a calculator).

$$
\begin{array}{ll}
4^{\frac{3}{2}}=(\sqrt{4})^{3}=2^{3}=8 & 8^{\frac{4}{3}}=(\sqrt[3]{8})^{4}=2^{4}=16 \\
\left(\frac{1}{8}\right)^{-\frac{1}{3}}=8^{\frac{1}{3}}=\sqrt[3]{8}=2 & 4^{-\frac{3}{2}}=\left(\frac{1}{4}\right)^{\frac{3}{2}}=(\sqrt{-16})^{3}=\left(\sqrt{\frac{1}{4}}\right)^{3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8} \quad 16^{.75}=16^{\frac{3}{4}}=(\sqrt[4]{16})^{3}=8
\end{array}
$$

4) Express each radical as a power.

$$
(\sqrt[3]{4})^{5}=4^{\frac{5}{3}} \quad \sqrt{5.5}=(5.5)^{\frac{1}{2}}
$$

5) Simplify the following. Write all powers with positive exponents.

$$
\frac{x^{2} y^{3}}{x y^{5}}=\frac{x}{y^{2}} \quad\left(x^{-2} y^{3}\right)\left(x^{4} y^{-1}\right)=x^{2} y^{2} \quad\left(\frac{x^{2}}{x^{4}}\right)^{-3}=\left(x^{-2}\right)^{-3}=x^{6}
$$

From Chapter 5

1) Write the Domain and Range for each of these relations.
a) $\{(0,3)(1,4)(2,5)\}$

Domain: $\{0,1,2\}$ Range: $\{3,4,5\}$
b) Domain: $-3 \leq x \leq 4$

Range: $0 \leq y \leq 2$
2) Is the relation a function (yes or no)? no (x value of 2 is used more than once)
3) Is the function a linear relation (yes or no)?
a) $\{(0,30)(1,20)(2,10)(3,0)\}$ yes...constant rate of change
b) $\{(1,1)(2,2)(3,4)(4,7)(5,11)\}$ no...rate of change is different
4) What is the rate of change for each linear relation below?
a) $\{(2,10)(4,20)(6,30)\}$ rate of change is $\frac{10}{2}=5$
b) rate of change is $-\frac{3}{1}=-3$
5) If the function is $f(x)=2 x+4$, find $f(3)$.
$f(3)=2(3)+4=10$

From Chapter 6

1) What is the slope of the line $y=2 x+3$? Slope is 2
2) What is the slope of the following graph? Slope is $-\frac{5}{2}$
3) What is the slope of the line that passes through the points $(3,6)$ and $(-1,4)$?

Slope $=\frac{6-4}{3-{ }^{-} 1}=\frac{2}{4}=\frac{1}{2}$
4) Graph the line $2 x+y=-3$.
$y=-2 x-3$
$m=-2$ (Slope)
$b=-3$ (y-intercept)

5) Identify the slope and the coordinates of a point on the line of the equation $y+5=-2(x-4)$.
Slope is -2 Point is (4, -5)
6) Write an equation in the form $y-y_{1}=m\left(x-x_{1}\right) \quad$ (slope/point form) for the graph of a linear function that passes through the points $(1,4)$ and $(3,7)$.

Slope $=\frac{4-7}{1-3}=\frac{-3}{-2}=\frac{3}{2} \quad y-4=\frac{3}{2}(x-1) \quad$ OR $\quad y-7=\frac{3}{2}(x-3)$
7) Write the equation of the line in the form $y=m x+b$ (slope/intercept form) that has a y intercept of 5 and is perpendicular to the line with an equation $y=2 x+3$.

Slope is $-\frac{1}{2}$ (perpendicular $=$ use neg reciprocal of 2)

$$
y=-\frac{1}{2} x+5
$$

8) Rewrite the equation $3 x+2 y-6=0$ into the form $y=m x+b$ (slope/intercept form).
$2 y=-3 x+6$
$y=-\frac{3}{2} x+\frac{6}{2} \quad y=-\frac{3}{2} x+3$

From Chapter 7

1) Is the point $(2,3)$ a solution to the system below? (Why or why not?)

$x=y-1$

$$
2=3-1
$$

Works in both!
2) Solve the following system using the Graphic Method.
$y=2 x+2 \quad y=2 x+2$
$x+y=5 \quad y=-1 x+5$

Solution is (1, 4)
3) Solve the following system using the Substitution Method.

$2 x+3 y=11$
$y=2 x+1$
$2 x+3(2 x+1)=11$
$y=2(1)+1$
$2 x+6 x+3=11$
$y=3$
$8 x+3=11$
$8 x=8$
Solution is (1, 3)
$x=1$
4) Solve the following system using the Elimination Method.

$$
\begin{aligned}
& 3 x+2 y=1 \\
& 3 x+2 y=1 \\
& 3 x+2(2)=1 \\
& x-3 y=-7 \quad x(-3) \\
& \frac{-3 x+9 y=21}{11 y=22} \\
& 3 x+4=1 \\
& 3 x=-3 \\
& x=-1 \\
& \text { Solution (-1, 2) }
\end{aligned}
$$

5) How many solutions (none, infinite, one) does the system have?
a) $y=2 x+3$ None (same slope, diff y-int)
$y=2 x-3$
b) $-2 x+y=4 \quad y=2 x+4$
$4 x-2 y=-8$
$-2 y=-4 x-8$
$y=2 x+4 \quad$ Infinite (both have same slope and y-int)
6) $w=$ width $2 w+2 \mid=150$

$$
\begin{aligned}
a=\text { adult tickets } & 2 a+3 c=35 \\
c=\text { child tickets } & 4 a+1 c=45
\end{aligned}
$$

