Pre - Calculus 30

Unit 4 Review

Trigonometry and the Unit Circle

1. If each angle is in standard position, in which quadrant does it terminate? Sketch each angle.
a) 100°
b) 500°
c) 10
d) $\frac{29 \pi}{6}$
2. Draw each angle in standard position. Convert each degree measure to radian measure and each radian measure to degree measure. Give answers as exact values.
a) $\frac{5 \pi}{2}$
b) 240°
c) -405°
d) -3.5
3. Determine the measure of all angles coterminal with each angle in the domain $-720^{\circ} \leq \theta \leq 720^{\circ}$ or $-4 \pi \leq \theta \leq 4 \pi$. Draw a diagram showing the quadrant in which each angle terminates.
a) 6.75
b) 400°
c) -3
d) -105°
4. Write an expression for all angles coterminal with each angle. Indicate what your variable represents.
a) 250°
b) $\frac{5 \pi}{2}$
c) -300°
d) 6
5. Use the information in each diagram to determine the value of the variable. Give your answers to the nearest hundredth of a unit.
a)

b)
c)

d)

6. DEVELOP the unit circle with the angles (in radians) and their coordinates. (don't just copy it..)

7. $P(\theta)=(x, y)$ is the point where the terminal arm of an angle θ intersects the unit circle. What are the coordinates for each point?
a) $P\left(\frac{5 \pi}{6}\right)$
b) $P\left(-150^{\circ}\right)$
c) $P\left(-\frac{11 \pi}{2}\right)$
d) $P\left(45^{\circ}\right)$
e) $P\left(120^{\circ}\right)$
f) $P\left(\frac{11 \pi}{3}\right)$
8. Identify all measures for θ in the interval $-2 \pi \leq \theta \leq 2 \pi$ such that $P(\theta)$ is the given point.
a) $(0,1)$
b) $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
c) $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
d) $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
9. If $P(\theta)=\left(\frac{\sqrt{5}}{3},-\frac{2}{3}\right)$ what is the measure of θ ?
10. Without using a calculator, determine the exact value of each trigonometric ratio. Sketch and find the reference angle.
a) $\sin \left(-\frac{3 \pi}{2}\right)$
b) $\cos \left(\frac{3 \pi}{4}\right)$
c) $\cot \left(\frac{7 \pi}{6}\right)$
d) $\sec \left(-210^{\circ}\right)$
e) $\tan \left(720^{\circ}\right)$
f) $\csc \left(300^{\circ}\right)$
11. If $\cos \theta=\frac{1}{3}, 0^{\circ} \leq \theta \leq 270^{\circ}$, what is the value of each of the other 5 trigonometric ratios of θ ?
12. Determine the approximate measure of all angles that satisfy the following. Give answers to the nearest hundredth of a unit. Draw a sketch to show the quadrant(s) involved.
a) $\sin \theta=0.54,-2 \pi \leq \theta \leq 2 \pi$
b) $\tan \theta=9.3,-180^{\circ} \leq \theta \leq 360^{\circ}$
c) $\cos \theta=-0.77,-\pi \leq \theta \leq \pi$
d) $\csc \theta=9.5,-270^{\circ} \leq \theta \leq 90^{\circ}$
13. Determine each trigonometric ratio, to three decimal places.
a) $\sin 285^{\circ}$
b) $\cot 130^{\circ}$
c) $\cos 4.5$
d) $\sec 7.38$
14. Factor each trigonometric expression.
a) $\cos ^{2} \theta+\cos \theta$
b) $\sin ^{2} \theta-3 \sin \theta-4$
c) $\cot ^{2} \theta-9$
d) $2 \tan ^{2} \theta-9 \tan \theta+10$
15. Determine the exact roots for each trigonometric equation.
a) $\csc \theta=\sqrt{2}, 0^{\circ} \leq \theta \leq 360^{\circ}$
b) $2 \cos \theta+1=0,0 \leq \theta \leq 2 \pi$
c) $3 \tan \theta-\sqrt{3}=0,-180^{\circ} \leq \theta \leq 360^{\circ}$
d) $\cot \theta+1=0,-\pi \leq \theta \leq \pi$
16. Solve for θ. Give solutions as exact values where possible. Otherwise, give approximate measures, to the nearest thousandth.
a) $2 \sin x+1=0,0 \leq x \leq 2 \pi$
b) $\cos ^{2} x=\cos x, 0 \leq \theta \leq 360^{\circ}$
c) $\tan ^{3} x-\tan x=0,0 \leq x \leq 360^{\circ}$
d) $4 \cos ^{2} x-3=0,0 \leq x \leq 2 \pi$
e) $2 \sin ^{2} x=-3 \sin x-1,0 \leq x \leq 2 \pi$
f) $6 \cos ^{2} \theta+\cos \theta=1,0 \leq \theta \leq 360^{\circ}$
17. Determine the general solution for the following equations.
a) $12 \sin ^{3} x-3 \sin x=0$
b) $2 \cos ^{2} x+1=-3 \cos x$
c) $4 \sin ^{2} x-3=0$
d) $\tan ^{3} x=3 \tan x$
