Pre – Calculus 30 Unit 4 Review Trigonometry and the Unit Circle

- 1. If each angle is in standard position, in which quadrant does it terminate? Sketch each angle.
 - a) 100° b) 500° c) 10 d) $\frac{29\pi}{6}$

2. Draw each angle in standard position. Convert each degree measure to radian measure and each radian measure to degree measure. Give answers as **exact values**.

a) $\frac{5\pi}{2}$ b) 240° c) -405° d) -3.5

3. Determine the measure of all angles coterminal with each angle in the domain $-720^{\circ} \le \theta \le 720^{\circ}$ or $-4\pi \le \theta \le 4\pi$. Draw a diagram showing the quadrant in which each angle terminates. a) 6.75 b) 400° c) -3 d) -105°

4. Write an expression for all angles coterminal with each angle. Indicate what your variable represents.

a)
$$250^{\circ}$$
 b) $\frac{5\pi}{2}$ c) -300° d) 6

5. Use the information in each diagram to determine the value of the variable. Give your answers to the nearest hundredth of a unit.

6. DEVELOP the unit circle with the angles (in radians) and their coordinates. (don't just copy it..)

7. $P(\theta) = (x, y)$ is the point where the terminal arm of an angle θ intersects the unit circle. What are the coordinates for each point?

a)
$$P\left(\frac{5\pi}{6}\right)$$
 b) $P(-150^{\circ})$ c) $P\left(-\frac{11\pi}{2}\right)$ d) $P(45^{\circ})$ e) $P(120^{\circ})$ f) $P\left(\frac{11\pi}{3}\right)$

8. Identify all measures for θ in the interval $-2\pi \le \theta \le 2\pi$ such that $P(\theta)$ is the given point.

a)
$$(0,1)$$
 b) $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$ c) $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ d) $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$

9. If $P(\theta) = \left(\frac{\sqrt{5}}{3}, -\frac{2}{3}\right)$ what is the measure of θ ?

10. Without using a calculator, determine the exact value of each trigonometric ratio. Sketch and find the reference angle.

a)
$$\sin\left(-\frac{3\pi}{2}\right)$$
 b) $\cos\left(\frac{3\pi}{4}\right)$ c) $\cot\left(\frac{7\pi}{6}\right)$

d)
$$\sec(-210^{\circ})$$
 e) $\tan(720^{\circ})$ f) $\csc(300^{\circ})$

11. If $\cos \theta = \frac{1}{3}$, $0^{\circ} \le \theta \le 270^{\circ}$, what is the value of each of the other 5 trigonometric ratios of θ ?

12. Determine the approximate measure of all angles that satisfy the following. Give answers to the nearest hundredth of a unit. Draw a sketch to show the quadrant(s) involved.

a) $\sin \theta = 0.54, -2\pi \le \theta \le 2\pi$ b) $\tan \theta = 9.3, -180^{\circ} \le \theta \le 360^{\circ}$ c) $\cos \theta = -0.77, -\pi \le \theta \le \pi$ d) $\csc \theta = 9.5, -270^{\circ} \le \theta \le 90^{\circ}$

13. Determine each trigonometric ratio, to three decimal places.

a) $\sin 285^{\circ}$ b) $\cot 130^{\circ}$ c) $\cos 4.5$ d) $\sec 7.38$

14. Factor each trigonometric expression.

a) $\cos^2\theta + \cos\theta$ b) $\sin^2\theta - 3\sin\theta - 4$ c) $\cot^2\theta - 9$ d) $2\tan^2\theta - 9\tan\theta + 10$

15. Determine the exact roots for each trigonometric equation.

a) $\csc \theta = \sqrt{2}, 0^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ b) $2\cos \theta + 1 = 0, 0 \le \theta \le 2\pi$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan \theta - \sqrt{3} = 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan^{\circ} \theta \le 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan^{\circ} \theta \le 0, -180^{\circ} \le \theta \le 360^{\circ}$ c) $3\tan^{\circ} \theta \le 0, -180^{\circ} \le 0, -180$

16. Solve for θ . Give solutions as exact values where possible. Otherwise, give approximate measures, to the nearest thousandth.

a) $2\sin x + 1 = 0, 0 \le x \le 2\pi$ b) $\cos^2 x = \cos x, 0 \le \theta \le 360^\circ$ c) $\tan^3 x - \tan x = 0, 0 \le x \le 360^\circ$ d) $4\cos^2 x - 3 = 0, 0 \le x \le 2\pi$ e) $2\sin^2 x = -3\sin x - 1, 0 \le x \le 2\pi$ f) $6\cos^2 \theta + \cos \theta = 1, 0 \le \theta \le 360^\circ$

17. Determine the *general solution* for the following equations.

a) $12\sin^3 x - 3\sin x = 0$ b) $2\cos^2 x + 1 = -3\cos x$ c) $4\sin^2 x - 3 = 0$ d) $\tan^3 x = 3\tan x$