AP Calculus - Final Review Sheet

When you see the words		This is what you think of doing
1.	Find the zeros	Find roots. Set function $=0$, factor or use quadratic equation if quadratic, graph to find zeros on calculator
2.	Show that $f(x)$ is even	Show that $f(-x)=f(x)$ symmetric to y-axis
3.	Show that $f(x)$ is odd	Show that $f(-x)=-f(x)$ OR $f(x)=-f(-x)$ symmetric around the origin
4.	Show that $\lim _{x \rightarrow a} f(x)$ exists	Show that $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$; exists and are equal
5.	Find $\lim _{x \rightarrow a} f(x)$, calculator allowed	Use TABLE [ASK], find y values for x-values close to a from left and right
6.	Find $\lim _{x \rightarrow a} f(x)$, no calculator	Substitute $x=a$ 1) limit is value if $\frac{b}{c}$, incl. $\frac{0}{c}=0 ; c \neq 0$ 2) DNE for $\frac{b}{0}$ 3) $\frac{0}{0}$ DO MORE WORK! a) rationalize radicals b) simplify complex fractions c) factor/reduce d) known trig limits 1. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ 2. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$ e) piece-wise fcn: check if $\mathrm{RH}=\mathrm{LH}$ at break
7.	Find $\lim _{x \rightarrow \infty} f(x)$, calculator allowed	Use TABLE [ASK], find y values for large values of x , i.e. 999999999999
8.	Find $\lim _{x \rightarrow \infty} f(x)$, no calculator	Ratios of rates of changes 1) $\frac{\text { fast }}{\text { slow }}=D N E$ 2) $\frac{\text { slow }}{\text { fast }}=0$ 3) $\frac{\text { same }}{\text { same }}=$ ratio of coefficients
9.	Find horizontal asymptotes of $f(x)$	Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
10.	Find vertical asymptotes of $f(x)$	Find where $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$ 1) Factor/reduce $f(x)$ and set denominator $=0$ 2) $\ln x$ has VA at $x=0$

11.	Find domain of $f(x)$	Assume domain is $(-\infty, \infty)$. Restrictable domains: denominators $\neq 0$, square roots of only non-negative numbers, \log or \ln of only positive numbers, real-world constraints
12.	Show that $f(x)$ is continuous	Show that 1) $\lim _{x \rightarrow a} f(x)$ exists $\left(\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)\right)$ 2) $f(a)$ exists 3) $\lim _{x \rightarrow a} f(x)=f(a)$
13.	Find the slope of the tangent line to $f(x)$ at $\mathrm{x}=\mathrm{a}$.	Find derivative $f^{\prime}(a)=m$
14.	Find equation of the line tangent to $f(x)$ at (a, b)	$\begin{aligned} & f^{\prime}(a)=m \text { and use } y-b=m(x-a) \\ & \text { sometimes need to find } b=f(a) \end{aligned}$
15.	Find equation of the line normal (perpendicular) to $f(x)$ at (a, b)	Same as above but $m=\frac{-1}{f^{\prime}(a)}$
16.	Find the average rate of change of $f(x)$ on $[a, b]$	$\text { Find } \frac{f(b)-f(a)}{b-a}$
17.	Show that there exists a c in $[a, b]$ such that $f(c)=n$	Intermediate Value Theorem (IVT) Confirm that $f(x)$ is continuous on $[a, b]$, then show that $f(a) \leq n \leq f(b)$.
18.	Find the interval where $f(x)$ is increasing	Find $f^{\prime}(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f^{\prime}(x)$ and determine where $f^{\prime}(x)$ is positive.
19.	Find interval where the slope of $f(x)$ is increasing	Find the derivative of $f^{\prime}(x)=f^{\prime \prime}(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f^{\prime \prime}(x)$ and determine where $f^{\prime \prime}(x)$ is positive.
20.	Find instantaneous rate of change of $f(x)$ at a	Find $f^{\prime}(a)$
21.	Given $s(t)$ (position function), find $v(t)$	Find $v(t)=s^{\prime}(t)$
22.	Find $f^{\prime}(x)$ by the limit definition Frequently asked backwards	$\begin{aligned} & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { or } \\ & f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \end{aligned}$
23.	Find the average velocity of a particle on $[a, b]$	Find $\frac{1}{b-a} \int_{a}^{b} v(t) d t$ OR $\frac{s(b)-s(a)}{b-a}$ depending on if you know $v(t)$ or $s(t)$
24.	Given $v(t)$, determine if a particle is speeding up at $t=k$	Find $v(k)$ and $a(k)$. If signs match, the particle is speeding up; if different signs, then the particle is slowing down.
25.	Given a graph of $f^{\prime}(x)$, find where $f(x)$ is increasing	Determine where $f^{\prime}(x)$ is positive (above the x-axis.)

26.	Given a table of x and $f(x)$ on selected values between a and b, estimate $f^{\prime}(c)$ where c is between a and b.	Straddle c, using a value, k, greater than c and a value, h, less than c. so $f^{\prime}(c) \approx \frac{f(k)-f(h)}{k-h}$
27.	Given a graph of $f^{\prime}(x)$, find where $f(x)$ has a relative maximum.	Identify where $f^{\prime}(x)=0$ crosses the x-axis from above to below OR where $f^{\prime}(x)$ is discontinuous and jumps from above to below the x-axis.
28.	Given a graph of $f^{\prime}(x)$, find where $f(x)$ is concave down.	Identify where $f^{\prime}(x)$ is decreasing.
29.	Given a graph of $f^{\prime}(x)$, find where $f(x)$ has point(s) of inflection.	Identify where $f^{\prime}(x)$ changes from increasing to decreasing or vice versa.
30.	Show that a piecewise function is differentiable at the point a where the function rule splits	First, be sure that the function is continuous at $x=a$ by evaluating each function at $\mathrm{x}=\mathrm{a}$. Then take the derivative of each piece and show that $\lim _{x \rightarrow a^{-}} f^{\prime}(x)=\lim _{x \rightarrow a+} f^{\prime}(x)$
31.	Given a graph of $f(x)$ and $h(x)=f^{-1}(x)$, find $h^{\prime}(a)$	Find the point where a is the y-value on $f(x)$, sketch a tangent line and estimate $f^{\prime}(b)$ at the point, then $h^{\prime}(a)=\frac{1}{f^{\prime}(b)}$
32.	Given the equation for $f(x)$ and $h(x)=f^{-1}(x)$, find $h^{\prime}(a)$	Understand that the point (a, b) is on $h(x)$ so the point (b, a) is on $f(x)$. So find b where $f(b)=a$ $h^{\prime}(a)=\frac{1}{f^{\prime}(b)}$
33.	Given the equation for $f(x)$, find its derivative algebraically.	1) know product/quotient/chain rules 2) know derivatives of basic functions a. Power Rule: polynomials, radicals, rationals b. $e^{x} ; b^{x}$ c. $\ln x ; \log _{b} x$ d. $\sin x ; \cos x ; \tan x$ e. $\arcsin x ; \arccos x ; \arctan x ; \sin ^{-1} x ;$ etc
34.	Given a relation of x and y, find $\frac{d y}{d x}$ algebraically.	Implicit Differentiation Find the derivative of each term, using product/quotient/chain appropriately, especially, chain rule: every derivative of y is multiplied by $\frac{d y}{d x}$; then group all $\frac{d y}{d x}$ terms on one side; factor out $\frac{d y}{d x}$ and solve.
35.	Find the derivative of $f(g(x))$	$\begin{aligned} & \text { Chain Rule } \\ & f^{\prime}(g(x)) \cdot g^{\prime}(x) \end{aligned}$

36.	Find the minimum value of a function on $[a, b]$	Solve $f^{\prime}(x)=0$ or DNE, make a sign chart, find sign change from negative to positive for relative minimums and evaluate those candidates along with endpoints back into $f(x)$ and choose the smallest. NOTE: be careful to confirm that $f(x)$ exists for any x -values that make $f^{\prime}(x)$ DNE.
37.	Find the minimum slope of a function on $[a, b]$	Solve $f^{\prime \prime}(x)=0$ or DNE, make a sign chart, find sign change from negative to positive for relative minimums and evaluate those candidates along with endpoints back into $f^{\prime}(x)$ and choose the smallest. NOTE: be careful to confirm that $f(x)$ exists for any x -values that make $f^{\prime \prime}(x)$ DNE.
38.	Find critical values	Express $f^{\prime}(x)$ as a fraction and solve for numerator and denominator each equal to zero.
39.	Find the absolute maximum of $f(x)$	Solve $f^{\prime}(x)=0$ or DNE, make a sign chart, find sign change from positive to negative for relative maximums and evaluate those candidates into $f(x)$, also find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$; choose the largest.
40.	Show that there exists a c in $[a, b]$ such that $f^{\prime}(c)=0$	Rolle's Theorem Confirm that f is continuous and differentiable on the interval. Find k and j in $[a, b]$ such that $f(k)=f(j)$, then there is some c in $[k, j]$ such that $f^{\prime}(c)=0$.
41.	Show that there exists a c in $[a, b]$ such that $f^{\prime}(c)=m$	Mean Value Theorem Confirm that f is continuous and differentiable on the interval. Find k and j in $[a, b]$ such that $m=\frac{f(k)-f(j)}{k-j}$, then there is some c in $[k, j]$ such that $f^{\prime}(c)=m$.
42.	Find range of $f(x)$ on $[a, b]$	Use max/min techniques to find values at relative max/mins. Also compare $f(a)$ and $f(b)$ (endpoints)
43.	Find range of $f(x)$ on $(-\infty, \infty)$	Use max/min techniques to find values at relative max/mins. Also compare $\lim _{x \rightarrow+\infty} f(x)$.
44.	Find the locations of relative extrema of $f(x)$ given both $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Particularly useful for relations of x and y where finding a change in sign would be difficult.	Second Derivative Test Find where $f^{\prime}(x)=0$ OR DNE then check the value of $f^{\prime \prime}(x)$ there. If $f^{\prime \prime}(x)$ is positive, $f(x)$ has a relative minimum. If $f "(x)$ is negative, $f(x)$ has a relative maximum.

45.	Find inflection points of $f(x)$ algebraically.	Express $f^{\prime \prime}(x)$ as a fraction and set both numerator and denominator equal to zero. Make sign chart of $f^{\prime \prime}(x)$ to find where $f^{\prime \prime}(x)$ changes sign. (+ to - or - to +) NOTE: be careful to confirm that $f(x)$ exists for any x values that make f " (x) DNE.
46.	Show that the line $y=m x+b$ is tangent to $f(x)$ at $\left(x_{1}, y_{1}\right)$	Two relationships are required: same slope and point of intersection. Check that $m=f^{\prime}\left(x_{1}\right)$ and that $\left(x_{1}, y_{1}\right)$ is on both $f(x)$ and the tangent line.
47.	Find any horizontal tangent line(s) to $f(x)$ or a relation of x and y.	Write $\frac{d y}{d x}$ as a fraction. Set the numerator equal to zero. NOTE: be careful to confirm that any values are on the curve. Equation of tangent line is $y=b$. May have to find b.
48.	Find any vertical tangent line(s) to $f(x)$ or a relation of x and y.	Write $\frac{d y}{d x}$ as a fraction. Set the denominator equal to zero. NOTE: be careful to confirm that any values are on the curve. Equation of tangent line is $x=a$. May have to find a.
49.	Approximate the value of $f(0.1)$ by using the tangent line to f at $x=0$	Find the equation of the tangent line to f using $y-y_{1}=m\left(x-x_{1}\right)$ where $m=f^{\prime}(0)$ and the point is $(0, f(0))$. Then plug in 0.1 into this line; be sure to use an approximate (\approx) sign. Alternative linearization formula: $y=f^{\prime}(a)(x-a)+f(a)$
50.	Find rates of change for volume problems.	Write the volume formula. Find $\frac{d V}{d t}$. Careful about product/ chain rules. Watch positive (increasing measure)/negative (decreasing measure) signs for rates.
51.	Find rates of change for Pythagorean Theorem problems.	$x^{2}+y^{2}=z^{2}$ $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t}$; can reduce 2 's Watch positive (increasing distance)/negative (decreasing distance) signs for rates.
52.	Find the average value of $f(x)$ on $[a, b]$	Find $\frac{1}{b-a} \int_{a}^{b} f(x) d x$
53.	Find the average rate of change of $f(x)$ on $[a, b]$	$\frac{f(b)-f(a)}{b-a}$
54.	Given $v(t)$, find the total distance a particle travels on $[a, b]$	Find $\int_{a}^{b}\|v(t)\| d t$
55.	Given $v(t)$, find the change in position a particle travels on $[a, b]$	Find $\int_{a}^{b} v(t) d t$

56.	Given $v(t)$ and initial position of a particle, find the position at $\mathrm{t}=\mathrm{a}$.	Find $\int_{0}^{a} v(t) d t+s(0)$ Read carefully: starts at rest at the origin means $s(0)=0$ and $v(0)=0$
57.	$\frac{d}{d x} \int_{a}^{x} f(t) d t=$	$f(x)$
58.	$\frac{d}{d x} \int_{a}^{g(x)} f(t) d t$	$f(g(x)) g^{\prime}(x)$
59.	Find area using left Riemann sums	$A=\operatorname{base}\left[x_{0}+x_{1}+x_{2}+\ldots+x_{n-1}\right]$ Note: sketch a number line to visualize
60.	Find area using right Riemann sums	$A=\operatorname{base}\left[x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right]$ Note: sketch a number line to visualize
61.	Find area using midpoint rectangles	Typically done with a table of values. Be sure to use only values that are given. If you are given 6 sets of points, you can only do 3 midpoint rectangles. Note: sketch a number line to visualize
62.	Find area using trapezoids	$A=\frac{\text { base }}{2}\left[x_{0}+2 x_{1}+2 x_{2}+\ldots+2 x_{n-1}+x_{n}\right]$ This formula only works when the base (width) is the same. Also trapezoid area is the average of LH and RH. If different widths, you have to do individual trapezoids, $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
63.	Describe how you can tell if rectangle or trapezoid approximations over- or underestimate area.	Overestimate area: LH for decreasing; RH for increasing; and trapezoids for concave up Underestimate area: LH for increasing; RH for decreasing and trapezoids for concave down DRAW A PICTURE with 2 shapes.
64.	Given $\int_{a}^{b} f(x) d x$, find $\int_{a}^{b}[f(x)+k] d x$	$\int_{a}^{b}[f(x)+k] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} k d x=\int_{a}^{b} f(x) d x+k(b-a)$
65.	Given $\frac{d y}{d x}$, draw a slope field	Use the given points and plug them into $\frac{d y}{d x}$, drawing little lines with the indicated slopes at the points.
66.	y is increasing proportionally to y	$\frac{d y}{d t}=k y$ translating to $y=A e^{k t}$
67.	Solve the differential equation ...	Separate the variables - x on one side, y on the other. The $d x$ and $d y$ must all be upstairs. Integrate each side, add C. Find C before solving for y ,[unless $\ln y$, then solve for y first and find A]. When solving for y , choose + or - (not both), solution will be a continuous function passing through the initial value.
68.	Find the volume given a base bounded by $f(x)$ and $g(x)$ with $f(x)>g(x)$ and cross sections perpendicular to the x-axis are squares	The distance between the curves is the base of your square. So the volume is $\int_{a}^{b}(f(x)-g(x))^{2} d x$

69.	Given the value of $F(a)$ and $F^{\prime}(x)=f(x)$, find $F(b)$	Usually, this problem contains an anti-derivative you cannot do. Utilize the fact that if $F(x)$ is the antiderivative of f, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$. So solve for $F(b)$ using the calculator to find the definite integral, $F(b)=\int_{a}^{b} f(x) d x+F(a)$
70.	Meaning of $\int_{a}^{b} f(t) d t$	The accumulation function: net (total if $f(x)$ is positive) amount of y-units for the function $f(x)$ beginning at $\mathrm{x}=\mathrm{a}$ and ending at $\mathrm{x}=\mathrm{b}$.
71.	Given $v(t)$ and $s(0)$, find the greatest distance from the origin of a particle on $[a, b]$	Solve $v(t)=0$ OR DNE. Then integrate $v(t)$ adding $s(0)$ to find $s(t)$. Finally, compare s (each candidate) and s(each endpoint). Choose greatest distance (it might be negative!)
72.	Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons $/ \mathrm{min}$ and emptied at the rate of $E(t)$ gallons $/$ min on $[0, b]$, find a) the amount of water in the tank at m minutes	$g+\int_{0}^{m}(F(t)-E(t)) d t$
73.	b) the rate the water amount is changing at m	$\frac{d}{d t} \int_{0}^{m}(F(t)-E(t)) d t=F(m)-E(m)$
74.	c) the time when the water is at a minimum	Solve $F(t)-E(t)=0$ to find candidates, evaluate candidates and endpoints as $x=a$ in $g+\int_{0}^{a}(F(t)-E(t)) d t$, choose the minimum value
75.	Find the area between $f(x)$ and $g(x)$ with $f(x)>g(x)$ on $[a, b]$	$A=\int_{a}^{b}[f(x)-g(x)] d x$
76.	Find the volume of the area between $f(x)$ and $g(x)$ with $f(x)>g(x)$, rotated about the x-axis.	$V=\pi \int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x$
77.	Given $v(t)$ and $s(0)$, find $s(t)$	$s(t)=\int_{0}^{t} v(x) d x+s(0)$
78.	Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ to two equal areas	$\frac{1}{2} \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x$ Note: this approach is usually easier to solve than $\int_{a}^{c} f(x) d x=\int_{c}^{b} f(x) d x$

79. Find the volume given a base bounded by $f(x)$ and $g(x)$ with $f(x)>g(x)$ and cross sections perpendicular to the x-axis are semi-circles

The distance between the curves is the diameter of your circle. So the volume is $\frac{1}{2} \pi \int_{a}^{b}\left(\frac{f(x)-g(x)}{2}\right)^{2} d x$

